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ABSTRACT 

 
The process of analog system design has been formulated on the basis of the control theory application. This approach 
generalizes the design process and produces the different design trajectories inside the same optimization procedure. 
Numerical examples show that the potential computer time gain of the optimal design strategy with respect to the 
traditional design strategy increases when the size and complexity of the system increase. However the potential time gain 
can be realized only in the time-optimal algorithm that is the combination of the different design strategies. An additional 
acceleration effect of the design process serves as the basis of the time-optimal algorithm construction. The optimal 
position of the switching points between different design trajectories can be obtained on the basis of the Lyapunov 
function of the design process as the minimization of its time derivative. 

 
 
 
 
 

RESUMEN 
 

El proceso de diseño de un sistema análogo ha sido formulado en la base de aplicación de la teoría de control. Este enfoque 
generaliza el proceso de diseño y produce las trayectorias distintas dentro del mismo procedimiento de optimización. 
Ejemplos numéricos muestran que la ganancia potencial del tiempo de cómputo de una estrategia óptima en comparación 
con la estrategia tradicional crece cuando el tamaño y la complejidad del sistema crecen. Sin embargo la ganancia potencial 
se realiza solo en caso cuando el algoritmo óptimo ha sido construido como la combinación de varias estrategias de diseño. 
Un efecto de aceleración adicional del proceso de diseño sirve como la base de la construcción del algoritmo óptimo en el 
tiempo. Las posiciones óptimas de los puntos de conmutación entre diferentes trayectorias de diseño se pueden obtener en 
la base de la función de Lyapunov del proceso de diseño por medio de la minimización de la derivada temporal de esta 
función.  
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ABSTRACT 

 
The process of analog system design has been formulated 
on the basis of the control theory application. This 
approach generalizes the design process and produces the 
different design trajectories inside the same optimization 
procedure. Numerical examples show that the potential 
computer time gain of the optimal design strategy with 
respect to the traditional design strategy increases when 
the size and complexity of the system increase. However 
the potential time gain can be realized only in the time-
optimal algorithm that is the combination of the different 
design strategies. An additional acceleration effect of the 
design process serves as the basis of the time-optimal 
algorithm construction. The optimal position of the 
switching points between different design trajectories can 
be obtained on the basis of the Lyapunov function of the 
design process as the minimization of its time derivative. 
 

1. INTRODUCTION 
 
The problem of the computer time reduction of a large 
system design is one of the essential problems of the total 
quality design improvement. There are some powerful 
methods that reduce the necessary time for the circuit 
analysis by means of the special sparse matrix techniques 
[1]-[2] or by the partitioning of a circuit matrix [3]-[4]. 
However there is another way to solve this problem. The 
generalized approach for the system design on the basis of 
control theory formulation was elaborated in some 
previous works [1]-[2]. This approach serves for the time-
optimal design algorithm definition. On the other hand 
this approach gives the possibility to analyze with a great 
clearness the design process while moving along the 
trajectory curve into the design space. The main 
conception of the theory is the introduction of the special 
control functions, which, on the one hand generalize the 
design process and, on the other hand, they give the 
possibility to control design process to achieve the 
optimum of the design objective function for the 
minimum computer time. This possibility appears because 
practically an infinite number of the different design 
strategies that exist within the bounds of the theory, but 
the different design strategies have the different operation 

number and executed computer time. On the bounds of 
this conception, the traditional design strategy is only a 
one representative of the enormous set of different design 
strategies. As shown in [5] the potential computer time 
gain that can be obtained by the new design problem 
formulation increases when the size and complexity of the 
system increase but it is realized only in case when we 
have the algorithm for the optimal trajectories 
systematical construction. We can define the formulation 
of the intrinsic properties and special restrictions of the 
optimal design trajectory as one of the first problems that 
needs to be solved for the optimal algorithm construction. 
 

2. PROBLEM FORMULATION 
 
The design process for any analog system design is 
defined as the problem of the objective function ( )XF  

minimization for NRX ∈  with the system of constraints 
that are the mathematical model of the designed system.  
The parametric optimization process for the objective 
function ( )XF  minimization for two-step procedure is 
defined in general case as following vector equation: 
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with constraints (1), where s is the iterations number, st  

is the iteration parameter, 1Rts ∈ ,  H is the direction of 

the objective function ( )XF  decreasing. We suppose 
that the mathematical model of the designed can be 
described by the nonlinear algebraic equations: 
 

( ) 0=Xg j         (2) 
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The main idea of the previous analysis [5]-[6] is the 
reformulation of the problem (1), (2) on the basis of the 
control theory. In this case the design process is defined 
by means  of  the   optimization   procedure   and   can   be 



written in the vector form as: 
 

( )dX
dt
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or in coordinate form as: 
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with an additional nonlinear system: 

 

( ) ( )1 0− =u g Xj j        (4) 
 

j M= 1 2, , . . . ,  
 
Equations (3) or (3') describe the design process in 
continues form. This process can be described in the 
discrete form as: 
 
 ( )UXftxx is
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A special vector ( )U u u um= 1 2, ,..., , where u j ∈ Ω ; 

{ }Ω = 0 1;  is defined for generalization of the design 
problem. The components of the vector U  have a sense as 
the control functions of the design process [6]. The 
function ( )UXf ,  is the directional movement vector H 
and has dependency from the generalized objective 
function ( )UXF , . It means that the main problem of the 
design process can be formulated as the problem of the 
integration of this system (3) with additional conditions 
(4). The structure of the function H for three different 
orders optimization methods can be defined as: 
 

( )( ) ( )UXFUXFfH ,´, −=≡       (6) 
 
for the gradient method, 
 

( )( ) ( ){ } ( )UXFUXFUXFfH ,´,´´, 1 ⋅−=≡ −     (6´) 
 
for the Newton’s method, where ( )UXF ,´´  is a matrix 
of second derivatives, 
 

( )( ) ( ) ( )UXFUXBUXFfH ,´,, ⋅−=≡   (6´´) 

for the Davidon-Fletcher-Powell (DFP) method, where  
B(X,U) is a symmetric, positive definite matrix of the 
DFP algorithm.  

The generalized objective function ( )UXF ,  is 
defined for instance as an additive function: 
 
 ( ) ( ) ( )UXXCUXF ,, ψ+=      (7) 
 
where ( )C X  is the ordinary objective function of the 
design process and ( )UX ,ψ  is the additional penalty 
function, which includes some equations of the system (4) 
and can be defined for instance as:  
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All control variables u j  are the functions of the current 
point of the design process. The total number of the 
different design trajectories, which are produced inside the 
same optimization procedure, is practically infinite. 
Among all of these strategies one or few optimal 
strategies exist that achieve the design objectives for the 
minimal computer time. Therefore, the problem of the 
optimal design strategy search is formulated as the typical 
problem for the functional minimization of the control 
theory. The main problem of this definition is unknown 
optimal dependencies of all control functions u j . The 
minimal-time problem for the system (3), (4) with non-
continued control functions can be solved most adequately 
by means of Pontryagin maximum principle [7]. The 
direct application of this principle to the non-linear 
problem is very problematical but the approximate 
methods can be used to solve it [8]-[10]. The approximate 
approach to solve this problem, which is proposed in this 
paper, is based on an additional acceleration effect [11] 
and on the behavior analysis of the special type of the 
Lyapunov function of the design process. Some 
significant characteristics of the acceleration effect of the 
design process were analyzed in the next section.  
 

3. MAIN FEATURES OF THE DESIGN 
ACCELERATION EFFECT 

 
The preliminary analysis of an additional acceleration 
effect of the design process was done in the paper [11]. 
This effect appears for all analyzed circuits and serves 
later on as the basis for the time-optimal algorithm 
construction.  
 Two-dimensional analysis has been done for a 
simplest electronic circuit with the topology, which is 
shown in Fig. 1. 



 
 

Figure 1.  Topology of a simplest electronic circuit.  
 
The element 1r  has a non-linear dependency in general 

case: 2
110 Vbrr n ⋅+= . The vector X of the state variables 

has two components X x x=( , )1 2 , where 1x  is the 
independent parameter, (x V2 1≡ ). The objective function 

is defined by the formula ( ) ( )C X x kV= −2

2
, where 

kV  has the fixed value. There is only two coordinate of 
the vector X and only one control function u1 in this case. 
We have only two design strategies with the fixed value 
of the function u1, for u1=0 (traditional design strategy) 
and for u1=1 (modified traditional design strategy). The 
design trajectory for this example is the curve in two-
dimensional space. The main result of the preliminary 
analysis [11] is that: the behavior of the trajectories which 
corresponds to the traditional and modified traditional 
design strategies is very different and the behavior of the 
trajectories that corresponds to the modified traditional 
design strategies strongly depends on the start point of the 
design process. The trajectories, which correspond to the 
initial vector Xin  with the components (1,-1) and for 
three different values of the non-linearity parameter bn  
(10-5, 1.0, 5.0) are presented in Fig. 2 (a), (b), (c) for the 
gradient optimization method. The trajectories that 
correspond to the traditional design strategy (solid line) 
are very different from the modified traditional strategy. 
For this last strategy the first part of the trajectory lies in a 
physically unreal sub-space (x2  < 0) and the second part 
lies in a real sub-space (x2  > 0). Moreover, it is very 
important to note that the movement along the trajectory 
is very fast from the start point S to the point R. On the 
other hand the movement is by far slower from the point 
R to the finish point F. It is very important that 
trajectories, which correspond to the traditional and the 
modified traditional strategies draw to the finish point F 
from the opposite directions. The unique possibility to 
accelerate the design process is created when the 
switching  point  of  the  control  function  u1  lies  in   the 

 
Figure 2. Trajectories for the traditional strategy (solid line) 

and for the modified traditional strategy (dash line)  for    
Xin  =(1,-1).  a) bn=10-5 ; b) bn=1.0 ; c) bn=5.0 . 

 
point, which is the projection of the finish point F to the 
modified traditional strategy trajectory, which lies in 
unreal sub-space. This is the point Sw. The optimal 
trajectory has two parts in this case. The first part 
corresponds to the curve S - Sw. During the movement 
along this curve the control function  u1 is equal to 1. The 
control function u1 at the time moment, which 
corresponds to the point Sw changes the value to 0. At 
this moment the jump is realized from the point  Sw  to 
the finish point  F or very near to the point F (it depends 
on the calculate step). Therefore a great acceleration of 
the design process takes place. This acceleration effect is 
observed for all values of the non-linearity parameter bn . 
This effect is observed for the N-dimensional examples 
too. However, in this case a trajectory line of the design 
process lies in N-dimensional design space and we need 
to analyze different projections of N-dimensional curves. 
 The five-dimensional problem is discussed below for the 
circuit with the topology, which is shown in Fig. 3. This is 
a non-linear circuit that has three admittance 321 ,, yyy   as 
independent parameters, (K=3) and two node voltages 

21,VV  as dependent parameters, (M=2). 
 

 
Figure 3.  Circuit topology for  K=3, M=2. 

 



Non-linear element has dependency by the law: 
( )2
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3≡  , 14 Vx ≡  , 25 Vx ≡ . The objective 
function ( )C X  has been determined as the sum of the 
squared differences between beforehand-defined values 
and current values of the nodal voltages for two nodes 
with additional inequalities for some circuit elements. 
However, it can be noted that the additional acceleration 
effect appears for the different types of the objective 
function. The data of the complete set of design strategy 
with constant value of the control function vector U and 
positive components of the initial vector Xin  are presented 
in Table 1 for three different optimization procedures. 
 

TABLE 1  
COMPLETE SET OF DESIGN STRATEGIES FOR THE INITIAL 

VECTOR  Xin = (1,1,1,1,1). 
 

 
 
 All these strategies are not time-optimal and the 
optimal design strategies for all optimization methods 
were found by means of the additional analysis. The 
results of this analysis are given in Table 2 for the non-
linearity parameters nb =1.0 and for two values of the 
initial vector X in =(1,1,1,1,1) and Xin =(1,1,1,1,-1). 
 

TABLE 2 
DATA OF THE OPTIMAL DESIGN STRATEGY FOR TWO 

VALUES OF THE VECTOR  Xin = (1,1,1,1,1), Xin = (1,1,1,1,-1) 
 

 
These results correspond to the analysis of the previous 
example. The optimal control functions and the optimal 
behavior of the design trajectories were obtained on the 
basis of some approximate methods of the optimal control 
theory [8]-[10]. The computer time gain of the optimal 
design strategy with respect to the traditional strategy is 
equal to 1.73, 1.74, and 2.3 for the gradient method, 
Newton method and DFP method respectively and for the 
first value of the initial vector X in . An additional 

acceleration effect is displayed in case when the initial 
vector X in  is equal to one of the two possible values: 
(1,1,1,1,-1) or (1,1,1,-1,-1). More effect is observed for 
the first value. This effect appears due to the trajectory 
jump, similar to the two-dimensional problem. However, 
in this case we have the five-dimensional space problem 
and the trajectory behavior is more complicated. The 
computer time gain in this case is equal to 3.85, 2.19, and 
3.41 for three above mentioned optimization methods. So, 
in this case we have an additional time gain of 123%, 
26%, and 48% for three different methods. 
 In general case, we have N-dimensional design problem. 
However, all specific features of the additional design 
acceleration, as a necessary trajectory jump, and a time 
gain are revealed again. The potential computer time gain 
of the optimum design strategy without and with an 
additional acceleration as the function of the dependent 
parameter number M is presented in Fig. 4 (a), (b) for 
three different optimization procedures. Fig. 4 (a) 
corresponds to the time gain without an additional 
acceleration effect when the initial value of the state 
variables are positive and Fig. 4 (b) corresponds to the 
time gain with an additional acceleration effect when the 
initial value of some state variables are negative. 
 

 
(a) 

 
(b) 

 
Figure 4. Optimal strategy potential computer time gain. 
1-Gradient method, 2-Newton method, 3-DFP method.  

(a) without an additional acceleration effect;  
(b) with an additional acceleration effect. 

N Control functions Gradient method Newton method DFP method
vector U (u1, u2) Iterations Total design Iterations Total design Iterations Total design

  number time (sec) number time (sec) number time (sec)
1             ( 0 0 ) 16 0.0243 7 0.0396 8 0.0241
2             ( 0 1 ) 51 0.0238 9 0.0251 10 0.0107
3             ( 1 0 ) 60 0.0448 8 0.0329 21 0.0331
4             ( 1 1 ) 68 0.0217 11 0.0231 23 0.0198

N Method  Initial co-ordinate Optimal control Iterations Switching Total
 vector  Xin functions vector number points design

    U (u1, u2 )  time (sec)
1 Gradient method          (1,1,1,1,1)   (10); (11) 39 11 0.0141

           (1,1,1,1,-1)   (11); (00); (11) 16            2; 3 0.0063
2 Newton method          (1,1,1,1,1)   (11); (10) 7 3 0.0228

           (1,1,1,1,-1)   (10); (00); (01) 5            1; 2 0.0181
3 DFP method          (1,1,1,1,1)   (01); (11) 10 9 0.0105

           (1,1,1,1,-1)   (11); (01) 7 2 0.0071



 The circuit topology for the different node number M 
has been taken from the paper [6]. The comparison of the 
curves of the figures 4 (a) and 4 (b) demonstrates that the 
additional acceleration effect is displayed for all analyzed 
examples and gives an additional time gain from 20% to 
180% depending on the problem dimension and 
optimization method.  
   The active circuit analysis gives similar results. In Fig. 
5 there is a circuit of the transistor amplifier that consists 
of three transistor cells.  

 
Figure 5. Circuit topology for three-transistor cell amplifier. 

 
The one, two, and three transistor cell circuits were 
analyzed separately. The circuit includes three nodes 
(M=3) for the first case. The second circuit includes two 
transistor cells and has five nodes (M=5). The last case 
includes the full circuit of the Fig.5 with three transistors 
and seven nodes (M=7). 
 The potential computer time gain of the optimal design 
strategy with an additional acceleration as the function of 
the transistor cell number NTR is presented in Fig. 6 for 
two different optimization procedures (gradient method 
and DFP method).  
 

 
 

Figure 6. Optimal strategy computer time gain of the active 
circuits with an additional acceleration effect.  

1-Gradient method, 2-DFP method. 

The additional acceleration is observed when some 
components of the initial vector Xin are negative. However 
in this case the analysis is more complicated because the 
trajectory design line not always exists due to the specific 
current dependency of the transistor junctions. The 
additional time gain due to the acceleration effect is 
changed from 30% to 125% depending on the node number 
and the optimization method. The trajectory behavior near 
the finish point has a grate influence to the acceleration 
effect quantitative value. The complex behavior of the 
trajectories can complicate the acceleration effect 
achievement because there is more than one jump required 
in this case. Nevertheless the total computer time gain of 
the optimal strategy for the last example (three transistor 
cells circuit with 7 nodes and 14 variables) due to the 
acceleration effect is equal to 620 for the gradient 
optimization method and 477 for the DFP method. 
 

4. INITIAL POINT SELECTION 
 
We start the analysis of the initial point selection and the 
influence of this initial point to the qualitative and 
quantitative characteristics of the acceleration effect from 
the simplest circuit of the Fig. 1 with non-linearity 
coefficient bn =1.0. The family of the curves, which 
correspond to the modified traditional design strategy 
(u=1) and the negative initial value of the second 
coordinate (x2<0) of the vector X is shown in Fig. 7 for 
the 2-D phase space.  
 

 
 
Figure 7. Trajectories of the modified traditional strategy for the 

different start points with the negative coordinate x2 . 
 
These curves have different start points but have the same 
final point F. The start points were selected on the circle 
arc and have the different initial coordinates. The special 
curve S-F, which is marked by thick line, is the separating  
curve. This curve separates the trajectories that are the 
candidates for the acceleration effect achievement (all 
curves that lie under the curve S-F), and the trajectories 
that cannot produce the acceleration effect (curves that lie 



over the curve S-F). It is clear that the projections of the 
finish point F to all curves of the first group define the 
switching point of the optimal trajectory, which produces 
the acceleration effect. These projections are defined by 
the intersection of the vertical line F-P and the 
corresponding curve of the first group. All curves of the 
first group (1-7) approach to the finish point F from the 
left side, and on the contrary, all curves of the second 
group (9-16) approach to the finish point from the right 
side. The S-F is the unique curve that goes to the finish 
point directly without any additional movement near the 
point F. The comparison of the computer time for all 
curves of the Fig. 7 shows the advantage of the curve S-F. 
The relative computer time τ  for all trajectories of the 
Fig. 7 is shown in Fig. 8 as the function of the curve 
number n.  

 

 
 
Figure 8. Relative computer time τ   as the function of the curve 

number n. 

 
The separating curve S-F (number 8) has the minimal 

computer time among all of the trajectories. At the same 
time this curve does not produce the time-optimal design 
strategy. First of all nobody can guess the start point that 
lies in this separating curve exactly. Other consideration is 
more important. This curve cannot be used as the basis for 
the time-optimal trajectory construction because the 
projection of the point F to this curve is the same point F, 
but the movement slows down near this point along the all 
design trajectories. Only the curves that lie under the 
curve S-F serve as the first part of the time-optimal 
trajectory with the following jump to the point F. It is 
interesting to compare the computer time of the different 
time-optimal trajectories that have various start points. 
The relative computer time τ  of the optimal trajectories 
with acceleration effect (on the basis of the curves 1-7, 
Fig. 7) as the function of the curve number n is shown in 
Fig. 9. The curves 9-16 can be optimized too by means of 
the total trajectory compose on some parts with the 
different control function value (1 or 0). However we have 
the time reduction about 10-15% only in this case. There 
is no sharp acceleration for all of these curves.  The  Fig. 9  

 
Figure 9. Relative computer time τ  of the optimal trajectories 
with acceleration effect as the function of the curve number n. 

 
shows that the total computer time increases when the 
start point approaches to the curve S-F, and on the 
contrary, the more acceleration can be obtained if we 
select the start point further from the curve S-F (from 
curve 7 to curve 1). All these considerations are correct 
when the principal equations (1)-(2) are integrated by the 
relatively small step. In this case the continuity approach 
is used. On the other hand, we can achieve the switching 
point of the optimal trajectory by one or few steps in the 
discrete approach and the computer time of the optimal 
trajectory practically does not depend from the initial 
point. This dependency like the curve in Fig.7 for [ ]7,1∈n .  
 By this analysis we can consider that numerical results 
of the section 3 are not unique. These are the typical 
results and they were obtained for the initial points, which 
correspond to the curves that lie under the separating 
curve. By means of the discrete approach we can control 
some first steps of the design procedure to obtain the 
minimal steps to reach the switching point. In this sense 
the computer time of the optimal strategy depends 
insignificantly on the initial point selection because the 
switching point can be reached for one or few steps. The 
independence of the optimal computer time and the time 
gain from the initial point selection implies however that 
these initial points lie on the curves of the first group, i.e. 
under the separating curve.      
 In general we can conclude that the acceleration effect 
appears when the start point is selected under the 
separating line and this effect has the better characteristics 
when the start point lies far from this separating line. So, 
the start point selection with at least one negative initial 
coordinate of the vector X and the value of this coordinate 
that provides the start point position under the separating 
line are the sufficient conditions for the acceleration effect 
appearance. All these conclusions are correct for the N-
dimensional problem too. We need to analyze the 
different projections of the N-dimensional curve in this 
case. The N-dimensional problem solution gets 
complicated by a large number of the different admissible 



trajectories and a large number of the different trajectory 
projections. In this case we need to choose the most 
perspective trajectories and analyze them. In this paper it 
was done by the careful analysis of all possibilities. The 
total number of the different design trajectories with the 
fixed control function vector U for the M-node circuit is 
equal to M2 , as shown in [6]. This set of the various 
trajectories can be divided in two different subsets. The 
first subset consists of the trajectories that are similar to 
the traditional design strategy trajectory, as for example 
the solid-line curves of the Fig. 2. The second subset 
consists of the trajectories that are similar to the modified 
traditional strategy trajectories as the dash-line curves of 
the Fig. 2. In this case the trajectories of the second group 
serve as the candidates for the first part of the optimal 
trajectory and the first group trajectories serve as the 
candidates to the jump produce. Two of these main steps 
together with the following different trajectory adjustment 
make up the essence of the optimal algorithm 
construction. By the experience in section 3 we can decide 
that not all of the feasible projections are important to the 
acceleration effect obtained. First of all the admittance-
voltage two-dimensional projections are more important. 
Among all of this type projections are of great importance 
those variables that are included in the objective function 
formula. By this preliminary selection we can reduce the 
number of the more perspective candidates for the time-
optimal algorithm elaboration. This problem final solution 
will be based on the optimal algorithm intrinsic structure. 
However, the results obtained in this paper serve as the 
next step on the way of this problem solution. Now it is 
clear that the optimal algorithm must include the special 
conditions to the acceleration effect reach. On the other 
hand the problem of the concrete trajectories selection 
from a large set of the different trajectories and the 
switching point position determination can be solved 
inside the time-optimal algorithm. 
 The sufficient conditions for the acceleration effect 
existence were defined above. However, these conditions 
do not define the suitable in practice value for the optimal 
start-point because nobody knows the separating line 
position in advance. We obtained the separating line 
position after the design problem analysis, but the real 
system design means the selection of the optimal start 
point beforehand and the movement along the optimal 
trajectory. All these problems are the essence of the 
optimal design algorithm construction. This problem does 
not have the exact solution until the moment; however the 
acceleration effect existence and its principal 
characteristics serve as the foundation for the optimal 
algorithm search. As to optimal start point choice, this 
problem can be solved by means of the negative 
coordinate selection sufficiently large in the absolute 
value, which ensure the acceleration effect existence. 

5. ON OPTIMAL ALGORITHM STRUCTURE 
 
On the basis of the analysis in previous section we can 
conclude that the time-optimal algorithm has one or some 
switching points where the switching realize from like 
modified traditional strategy to like traditional strategy 
with an additional adjusting. At least one negative 
component of the start value of the vector X is needed for 
the optimal trajectory obtained. 
 The main problem of the time-optimal algorithm 
construction is unknown sequence of the switching points 
during the design process. We need to define special 
criteria that permits realize the optimal or quasi-optimal 
algorithm by means of the optimal switching points 
searching. In this paper we propose to use a Lyapunov 
function of the design process for the optimal algorithm 
structure revelation, in particular for the optimal 
switching points searching. There is a freedom of the 
Lyapunov function choice because of a non-unique form 
of this function. Let define the Lyapunov  function  of  the 
design process as: 
 

  ( ) ( )∑ 
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where F(Y,U) is the generalized objective function of the 
optimization procedure. This form holds all of the 
necessary characteristics of the standard Lyapunov 
function definition. It is supposed that the vector Y is 
defined as the difference between two vectors X and A, 
where A is the stationary point of the design process (the 
final point). First of all the function (9) can be used for 
the stability analysis of the design process. In this context 
this function is used for the analysis of the design 
trajectories behavior with the different switching points. 
We can define now the system design process as a 
transition process that can provide the stationary point 
(optimal point of the design procedure) during some time. 
The problem of the time-optimal design algorithm 
construction is the problem of the transition process 
searching with the minimal transition time. There is a 
well-known idea [12]-[13] to minimize the transition 
process time by means of the special choice of the right 
hand part of the principal system of equations, in our case 
these are the functions ( )UXfi , . It is necessary to 

change the functions ( )UXfi ,  by means of the control 

vector U selection to obtain the maximum speed of the 
Lyapunov function decreasing (the maximum of -dV/dt ) 
at each point of the process. Unfortunately the direct 
using of this idea is not serves well for the time-optimal 
design algorithm construction. It occurs because the 
change of the design strategy produces not only 
continuous design trajectories (when we change the 



strategy u=0 to the strategy u=1 for the circuit in Fig. 1 
for instance) but non-continuous trajectories too (the 
changing from u=1 to u=0). Non-continues trajectories 
had never been appeared in control theory for the objects 
that described by differential equations, even for the 
equations with variable structure, but this is the ordinary 
case for the design process on the basis of the described 
design theory. In this case we need to correct the idea of 
the value -dV/dt maximize at each point of the design 
process. We define another principle: it is necessary to 
obtain the maximum speed of the Lyapunov function 
decreasing for that trajectory part that lies after the 
switching point. In this case the trajectories with the 
different switching points are compared to obtain the 
maximum value of -dV/dt. Technically this idea is 
realized by comparing some probes with the different 
switching points and selecting the one of them that 
provides the maximum of -dV/dt after the switching. Fig. 
10 shows the   behavior   of  the  Lyapunov  function time 
derivative for three consecutive neighbor-switching points 
1, 2, 3 and for five consecutive displacements of these 
points during the design trajectories around the optimal 
position for the circuit of Fig. 5. Fig. 10 (a), (b) 
correspond to the switching points those lie before the 
optimal position. We can see in this case that the behavior 
of the curve 2 is better than curve 1 because -dV/dt2 >      
-dV/dt1 and the curve 3 is better than the curve 2 because                           
-dV/dt3 > -dV/dt2.  Fig. 10 (c) corresponds to the optimal  
position of the switching point. The point 2 of Fig. 10 (c) 
is the optimal because the left neighbor and the right 
neighbor are worse. Fig. 10 (d), (e) correspond to the 
switching points that lie after the optimal position. 
 Analysis of these results and the data, which 
correspond to the other circuit types, shows that the idea 
of use of the Lyapunov function time derivative serves 
well in combination with the additional acceleration 
effect. In this case the optimal position of the switching 
point can be found. These ideas can make up the basis for 
the accurate construction of the time-optimal design 
algorithm. 
 It is clear that we need to calculate some additional 
probes during the optimal switching point position 
searching. This is the necessary pay for the optimal 
trajectory structure revelation. In this case we cannot 
obtain the time gain, which corresponds to the time-
optimal design strategy because we need to search the 
switching point optimal position during the design 
process. The time waste make up until 100% from the 
optimal design strategy time. It means that really we 
cannot obtain the time gain 620 or 477 for the circuit in     
Fig. 5, but a two times less (300 or 250). However these 
values are significant too and the total design time 
reduction is the sufficient basis for the new design 
methodology development.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
Figure 10. Time derivative of Lyapunov function behavior for 

three switching points 1,2,3 of the consecutive integration steps 
before (a), (b), in (c) and after (d), (e) the optimal point. 



6. CONCLUSIONS 
 
The traditional approach to the analog system design is not 
time-optimal. The problem of the time-optimal algorithm 
construction can be solved as the functional optimization 
problem of the control theory. The analysis of the different 
electronic systems gives the possibility to conclude that 
the potential computer time gain of the time-optimal 
design strategy increases when the size and complexity of 
the system increase. The additional acceleration effect of 
the system design process was discovered by means of the 
variation of the initial value of the state variables and the 
special control functions. This effect exists owing to the 
very different behavior of the design trajectories that have 
various control functions and different start points of the 
design space. The initial point selection permits obtain 
acceleration effect with a great probability. This effect 
reduces the total computer time additionally and serves as 
the basis for the optimal or quasi-optimal algorithm 
construction. The optimal position of the necessary 
switching points can be obtained on the basis Lyapunov 
function. The minimization of the time derivative of this 
function serves as the principal criterion for the optimal 
switching point’s definition. Thus the combination of the 
acceleration effect with the optimal switching points serve 
as the principal ideas for the quasi-optimal algorithm 
construction. 
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