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ABSTRACT 
 
This work presents the design of a fast single precision floating point FP adder. An 8-bit format, similar to the IEEE 754/85 
standard format is implemented using the round-to-nearest rounding mode. First, the basic algorithm for addition of floating 
point numbers is reviewed. After, one modified algorithm, which increases the performance of the FP adder, is explained 
and proposed for implementation. In order to validate the algorithm and perform a rapid prototyping, the functional units 
were all described in VHDL, and then synthesized in FPGA. The VHDL language also allows the scalability necessary to 
attend the requirements of different users and applications. Modifying the exponent and mantissa sizes can set precision 
and range. Functional blocks were optimized to improve the adder in terms of area consumption and delay. The results 
obtained with the implementation and optimizations are shown and discussed. 
 
 
 

RESUMO 
 
Este trabalho apresenta o desenvolvimento de um somador rápido em ponto flutuante, precisão simples. Um formato de 8 
bits, similar ao formato padrão da IEEE 754/85, é implementado utilizando o método arredondamento para o mais 
próximo. O algoritmo básico para soma de números em ponto flutuante é revisado. Após, um algoritmo modificado, que 
melhora o desempenho do somador em ponto flutuante é explicado e proposto para implementação. Para validar o 
algoritmo e realizar a prototipação rápida, as unidades funcionais foram descritas em VHDL, e então sintetizadas em 
FPGA. A linguagem VHDL também permite a escalabilidade necessária para atender demandas de diferentes usuários e 
aplicações. A precisão e intervalo de representação são ajustados modificando-se o tamanho da mantissa e do expoente. 
Os blocos funcionais são otimizados para melhorar o somador em termos de área consumida e atraso. Os resultados obtidos 
com a implementação e otimizações são mostrados e discutidos. 
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ABSTRACT 
 
This work presents the design of a fast single precision 
floating point adder. An 8-bit format, similar to the IEEE 
754/85 standard format is implemented using the round-
to-nearest rounding mode. First, the basic algorithm for 
addition of floating point numbers is reviewed. After, one 
modified algorithm, which increases the performance of 
the FP adder, is explained and proposed for 
implementation. In order to validate the algorithm and 
perform a rapid prototyping, the functional units were all 
described in VHDL, and then synthesized in FPGA. The 
VHDL language also allows the scalability necessary to 
attend the requirements of different users and 
applications. Modifying the exponent and mantissa sizes 
can set precision and range. Functional blocks were 
optimized to improve the adder in terms of area 
consumption and delay. The results obtained with the 
implementation and optimizations are shown and 
discussed. 
 

 
 

1. INTRODUCTION 
 
Many applications require numbers that are non-integers. 
If the representation interval of these numbers is wide and 
the required precision is high, floating point (FP) 
arithmetic is more suitable than fixed point one. The FP 
arithmetic has gained widespread use and today many 
general-purpose processors for digital signal processing 
(DSPs) implement FP arithmetic units. Unfortunately, 
these floating point units require excessive area and design 
time even for conventional implementations. Using the 
characteristics of VHDL that allow scalability or 
reusability, custom floating point formats can be derived 
from the IEEE 754/85 [1] format, for individual 
applications requirements, reducing the area consumption 
and increasing the speed. In [2], the floating point format 

was adapted to attend specifications like processor data 
path and memory width. The scalability allows the 
adjustment of different precisions and ranges, through the 
manipulation of the exponent and mantissa sizes. 

The use of high-level languages allows the rapid 
prototyping in Field Programmable Gate Arrays (FPGAs). 
The high programmability and the increased density of 
FPGAs are important characteristics when referring to 
DSP implementations. 

This paper is organized as follows. In Section 2, the 
floating point single precision representation is briefly 
reviewed. Section 3 describes the basic algorithm for 
addition of floating point numbers while in Section 4, a 
more time efficient algorithm is described. The algorithm 
implementation in FPGA is shown in Section 5. 
Improvements in the functional units to achieve a better 
performance of the adder are done in Section 6, and the 
results obtained are summarized in Section 7. 
 
 

2. THE FLOATING POINT FORMAT 
 
Figure 1 shows the single precision 32-bit floating point 
IEEE 754 format: 
 

 s e m 
Bit #: 31 30 ..        .. 23  22 ..                   .. 0 
Field: Sign exponent mantissa 

 
Figure 1. Floating Point IEEE 754 format 

 
The sign bit (bit 31) represents the sign of the 

number. The 8-bit exponent is a signed number, using a 
bias of 127. The 23-bit mantissa has a leading bit implied 
on the representation (1.m). The value of the floating point 
number is given by: 

 
– 1(s) 2(e – 127) (1.m) 

 



 

 

In this paper, another floating point format, similar to 
the IEEE 754, was used in order to allow a fast 
implementation and simulation of the developed algorithm 
shown in Section 4. This 8-bit format is composed of a 3-
bit exponent, a 4-bit mantissa and the sign bit. Also, to 
compare the implementations of different representations, 
a 16-bit format with a 6-bit exponent and a 9-bit mantissa 
was implemented. This 16-bit format was used in [2] to a 
FIR filter application. 

 
 
3. ADDITION/SUBTRACTION ALGORITHM 

 
A typical floating point operation takes two inputs with p 
bits of precision and returns a p-bit result. According to 
the basic algorithm, the exact the result is first computed 
and then rounded to p bits. The rounding method used is 
the IEEE 754 default, the round-to-nearest mode. The 
addition of two floating point number (a1 and a2) can be 
divided in four stages, as follows. Figure 2 shows a block 
diagram of the algorithm. 
 

 
Figure 2. Block diagram of the basic algorithm 

 
In Stage 1, the exponents are compared and if e1 < e2, 

the operands are swapped. This ensures the difference 
between the exponents to be a positive value. If the signs 
differ, the two’s complement of m2 is performed. After, m2 
is shifted (e1-e2) positions to the right, aligning the binary 
point. The first two bits shifted out are set to g (guard) and 
r (round), and the s (sticky) are set to the OR of the rest. 
The exponent of the result is equal to e1. 

In Stage 2, m1 and m2 are added (with the implied 
leading bit). If the result is negative, it should be replaced 

by its two’s complement. In Stage 3, the result is shifted to 
the left until it’s normalized. The exponent is adjusted 
according to the number of positions shifted. Finally, the 
result is rounded. 

In Stage 4, the number is rounded using the round-to-
nearest mode, which adds a one to the least significant bit 
according to the following rule: (LSB.r) + (r.s). If the 
rounding causes an overflow, replace the mantissa with 
zeros and add 1 to the exponent. Determine the sign of the 
result. 

Although four 24-bit adders are present in the 
algorithm, only three sequential additions can even take 
place. Unfortunately, it will lead to a low performance of 
the floating point adder, and consume a large area (four 
24-bit adders). The next section shows an improvement of 
this algorithm, in terms of speed and area.  
 
 

4. THE MODIFIED ALGORITHM 
 
In the modified algorithm, the three necessary additions 
(two’s complement, mantissa sum and the rounding) are 
combined together and performed in just one step. Figure 
3 sows a block diagram of the proposed algorithm). 

Three cases are identified, which cover all 
possibilities: (1) numbers with same signs, (2) numbers 
with different signs and same exponents, and (3) numbers 
with different signs and different exponents. The three 
possible situations are identified by two bits: the signal bit 
(F), which indicates if the signs are different; and 
difference bit (D), which indicates if the difference 
between the exponents is zero. The major problem is to 
identify which operations should be done in each case and 
how to define the necessary bits for the rounding step, 
since these bits depend on the format of this number after 
the mantissas sum. 

In each case, two possibilities are again identified. In 
order to cover both simultaneously, two data-path are 
proposed. Two concurrent assumptions are performed in 
parallel, and the correct answer is selected at the end of the 
addition. To perform all the additions in one, all the 
information necessary for the round-up operation, like the 
least significant bit of the sum and the g, r and s bits, 
should be determined in advance. So, the round-up can be 
done with the mantissas sum. After the sum, the result can 
be normalized . 

In the first case, the addition of the mantissas may 
cause a carry-out or not. The first datapath assumes that no 
carry-out has occurred. Since the number will be 
normalized, no left shifts will be necessary. The least 
significant bit of the sum can be achieved using the least 
significant bits of m1 and m2. The second datapath cover 
the possibility of carry-out. One right shift normalizes the 
numbers, and the LSB can be obtained in advance using 
the two least significant bits of m1 and m2.  



 

 

The second case is simpler than the first one, since 
the rounding will never occur (no left shifts). The first 
datapath perform (m1 – m2) while the second perform  (m2 
– m1). The positive answer is selected at the end of the 
operation. 

The third case combine the two’s complement of 
Stage 1, the mantissa sum and the rounding. The first 
datapath assumes a normalized result, while the second 
assumes the leading bit in any other position of the 
mantissa. When the MSB of the sum is known, it selects 
the correct result. As in the first case, the LSB of the result 
can be obtained from the least significant bits of m1 and 
m2. 

 

 
 

Figure 3. Block diagram of the modified algorithm 
 
This modified algorithm performs the floating point 

sum in one addition, regardless of number format. 
Comparing to the first algorithm showed, the number of 
fixed-point adders was reduced, although some additional 
external logic was incorporated to select the operands of 
the two parallel adders. 

 
5. IMPLEMENTATION 

 
The circuits of the adder were described in VHDL, as 
structural components. Then a hierarchical structure was 
created. The scalability of VHDL allows a fast operand 
width adjustment, and different precisions and ranges can 
be easily obtained. 

A magnitude comparator is employed to compare the 
exponents. So, the significand of the smallest number is 
always the right shifter input. Two subtractors are present 
in the FP adder. One performs exponent subtraction 

21 eed −= , determining the required number of right 
shifts, while the second adjusts the result exponent during 
the normalization step. The programmable right shifter 
performs the binary point alignment by shifting S2 to the 
right. It also supplies the guard g, round r and sticky s bits 
(not shown in the figure) required for rounding. 

The main functional unit of the FP adder is the 
Parallel Arithmetic Unity (PAU), shown in Figure 4. The 
PAU is composed of a duplicated 24-bit wide adder, a 
duplicated 2-bit adder and a duplicated carry-in generator. 
The significands to be added, and the guard, round and 
sticky bits from the programmable right shifter are the 
inputs of PAU . The signal F = sig1 ⊕  sig2 and D=OR-
function of all bits from d that PAU are used to identify 
the three cases. The 24-bit sum, the carry-out and the 
guard bit G, necessary to the normalization step, are the 
outputs of PAU. 
 

 
 

Figure 4. Parallel Arithmetic Unit - PAU 
 

Inside the PAU, the 2-bit adder has an important function: 
generate all rounding information in advance. Depending 
on the case, the inputs Ai and Bi and outputs Xi can differ 
in meaning and value. 

The programmable bi-directional shifter normalizes 
the result, after the significand addition. It can shift one bit 
to the right or a programmable number of bits to the left. 
When right shift is necessary, the high order bit of result 
should be filled with the carry-out. When left shift is 
necessary, the low order bit is filled with g bit in the first 
shift and with zeros in the next ones. The leading bit 
position encoder, which locates the position of the leading 
bit, generates the number of left shifts N. The exponent 
adjustment is performed together with the normalization, 
according to the number of bits shifted. If one right shift 
has occurred, the exponent should be incremented; 
otherwise, decremented of N. 



 

 

 
 

Figure 5. Post Place and Route Simulation 
 

In the Figure 5, the complete functional simulation 
can be observed. The operands A and B are 
added/subtracted. No errors in the algorithm and in the 
implementation were detected. 

 
 

6. OPTIMIZATIONS 
 
When describing circuits in VHDL, careful about some 
aspects should be taken into account. The synthesis tools 
are sensitive to behavioral or structural descriptions. One 
example is the for-loop which consumes a large area, since 
the synthesis tool generates hardware for each iteration 
[3]. The if statement is preferred instead, increasing the 
speed and reducing the required area. Besides, depending 
on the type of adders, better synthesis may be possible, 
since the descriptions of each adder can be different. 

The fixed-point adders represent the most time and 
area consuming in the floating point adder. In order to 
achieve faster and smaller circuits, different VHDL codes 
were implemented. The first implementation, taken as the 
reference, used a ripple-carry adder. The optimization 
alternatives used for fixed-point addition were: a carry-
select adder and the adder provided by the synthesis tool 
when using the statement S<=A+B. Table 1 and 2 shows 
the results obtained. 

 
Table 1. Area optimizations of the  

fixed-point adders (in slices) 
 

Carry Select Synthesis Tool operand 
size 

Ripple 
Carry Slices Opt. (%) Slices Opt. 

(%) 
8 7 9 +28,57 7 0 

16 15 19 +26,66 5 –66,67 

32 36 46 +27,77 12 –66,67 
 
 

Table 2. Delay optimizations of the  
fixed-point adders (in ns) 

 
Carry Select Synthesis Tool operand 

size 
Ripple 
Carry delay Opt. 

(%) delay Opt. 
(%) 

8 12,577 11,982 –4,73 11,474 –8,76 

16 19,763 15,318 –22,49 10,875 –44,97

32 40,595 29,094 –28,33 14,011 –65,48
 

The fixed-point adder provided by the synthesis tool 
has shown the best performance in terms of area and 
delay. This is due to the fact that the Spartan-II CLB 
supports carry logic [4]. The tool synthesizes the adders in 
a carry chain, optimizing the routing channel between the 
CLBs. However, for adders up to 7-bit wide, the synthesis 
tool didn’t create the carry chain resulting in non-
organized slices that consume an excessive area. This can 
be observed in Figure 6. For more than 7-bit wide, the 
carry chain produces an almost linear relation between 
area/delay and number of bits. The carry-select adder is 
another alternative, considering the trade-offs between 
consumed area and necessary speed, mainly in the case 
where there is no support for the carry logic. 

 



 

 

 
 

Figure 6. Area and delay of different sizes fixed-point 
adders provided by the synthesis tool 

 
When implementing the adder with small size 

operands like the 8-bit format proposed, the difference 
between the ripple-carry or the synthesis adder 
implementation is not visible. The Figure 7 shows a 
comparison between different width ripple-carry and 
synthesis adder. For the standard IEEE 754 32-bit format, 
the optimization can reach 33% in area and 34% in delay. 

 

 
 

 
 

Figure 7. Area and delay comparison between ripple-
carry and the synthesis tool adder  

 
7. RESULTS 

 
The 8-bit format was chosen for validation of the 
algorithm proposed in Section 5. This format reduces the 
number of inputs and outputs, which can ease the testing 
procedures. The FPGA targeted for implementation was 
the Xilinx xc2s200-5pq208 of the Spartan II family. The 
synthesis software used in this work was the FPGA 
Express from Synopsys, available into the Xilinx ISE 4.2i 
environment. 

Due to the small size of operands used in the 
validation, improvements could not be observed. 
Optimization results start to appear for wider operands. 
Table 3 summarizes the implementation results. 
 

Table 3. Optimizations of the 8-bit format Floating 
Point adder 

 

 Non-Optimized Optimized Optim. 
(%) 

Area 
(slices) 81 81 0 

Delay 
(ns) 49,069 50,046 +1,95 

Type 
Delay (ns)

22.152 logic 
26.917 route 

20.846 logic 
29.200 route 

–5,895 
+8,481 

Frequency
(MHz) 20,37 19,98 +1,90 

Logic 
Levels 26 24 –7,69 

Critical 
Path 

exp_A(0) to 
signif_out(4) 

exp_A(0) to 
signif_out(1) - 

 
 

8. CONCLUSIONS 
 
A fast single precision floating point adder was developed 
and prototyped, using a reduced format of 8-bit operands, 
similar to the standard IEEE 754 32-bit operand. An 
optimization at algorithm-level was adopted, reducing the 
number of sequential fixed-point additions. The proposed 
algorithm uses a Parallel Arithmetic Unit, which employs 
two parallel datapaths. So, the four fixed-point adders 
present in the first algorithm showed are reduced to two 
adders and the worst case delay was reduced from three to 
one fixed-point addition. 

The circuits of the floating point adder were 
described in VHDL as structural blocks and placed in a 
hierarchical structure. Using the scalability of a high-level 
language, different floating point formats can be achieved 
to fit the needs of different applications. The exponent and 
the mantissa sizes are adjusted to obtain different 
precisions and ranges. Optimizations in the VHDL codes 



 

 

were done to increase the speed and reduce the area 
consumed. One of the most time and area consumption 
blocks is the fixed-point adder. Different architectures 
were tested, some of them reducing the area and others 
reducing the delay. The adder with better performance is 
the adder produced by the synthesis tool. The Spartan II 
FPGA supports carry logic, resulting in small and fast 
adders. The optimizations in the adders reduced the logic 
delay and increased the route delay, resulting in almost the 
same total delay. For larger operands sizes, the 
optimizations in area and delay can reach reasonable 
values.  
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