

 OPTIMIZATION AND RAPID PROTOTYPING IN FPGA OF A
FAST SINGLE PRECISION FLOATING POINT ADDER

Guilherme Godoi, André Luiz Aita

Microelectronics Group – Department of Electronics and Computing – DELC
Centro de Tecnologia, Universidade Federal de Santa Maria, UFSM, Brazil.

guilherme@mail.ufsm.br, aaita@inf.ufsm.br

ABSTRACT

This work presents the design of a fast single precision floating point FP adder. An 8-bit format, similar to the IEEE 754/85
standard format is implemented using the round-to-nearest rounding mode. First, the basic algorithm for addition of floating
point numbers is reviewed. After, one modified algorithm, which increases the performance of the FP adder, is explained
and proposed for implementation. In order to validate the algorithm and perform a rapid prototyping, the functional units
were all described in VHDL, and then synthesized in FPGA. The VHDL language also allows the scalability necessary to
attend the requirements of different users and applications. Modifying the exponent and mantissa sizes can set precision
and range. Functional blocks were optimized to improve the adder in terms of area consumption and delay. The results
obtained with the implementation and optimizations are shown and discussed.

RESUMO

Este trabalho apresenta o desenvolvimento de um somador rápido em ponto flutuante, precisão simples. Um formato de 8
bits, similar ao formato padrão da IEEE 754/85, é implementado utilizando o método arredondamento para o mais
próximo. O algoritmo básico para soma de números em ponto flutuante é revisado. Após, um algoritmo modificado, que
melhora o desempenho do somador em ponto flutuante é explicado e proposto para implementação. Para validar o
algoritmo e realizar a prototipação rápida, as unidades funcionais foram descritas em VHDL, e então sintetizadas em
FPGA. A linguagem VHDL também permite a escalabilidade necessária para atender demandas de diferentes usuários e
aplicações. A precisão e intervalo de representação são ajustados modificando-se o tamanho da mantissa e do expoente.
Os blocos funcionais são otimizados para melhorar o somador em termos de área consumida e atraso. Os resultados obtidos
com a implementação e otimizações são mostrados e discutidos.

OPTIMIZATION AND RAPID PROTOTYPING IN FPGA OF A
FAST SINGLE PRECISION FLOATING POINT ADDER

Guilherme Godoi, André Luiz Aita

Microelectronics Group – Department of Electronics and Computing – DELC
Centro de Tecnologia, Universidade Federal de Santa Maria, UFSM, Brazil.

guilherme@mail.ufsm.br, aaita@inf.ufsm.br

ABSTRACT

This work presents the design of a fast single precision
floating point adder. An 8-bit format, similar to the IEEE
754/85 standard format is implemented using the round-
to-nearest rounding mode. First, the basic algorithm for
addition of floating point numbers is reviewed. After, one
modified algorithm, which increases the performance of
the FP adder, is explained and proposed for
implementation. In order to validate the algorithm and
perform a rapid prototyping, the functional units were all
described in VHDL, and then synthesized in FPGA. The
VHDL language also allows the scalability necessary to
attend the requirements of different users and
applications. Modifying the exponent and mantissa sizes
can set precision and range. Functional blocks were
optimized to improve the adder in terms of area
consumption and delay. The results obtained with the
implementation and optimizations are shown and
discussed.

1. INTRODUCTION

Many applications require numbers that are non-integers.
If the representation interval of these numbers is wide and
the required precision is high, floating point (FP)
arithmetic is more suitable than fixed point one. The FP
arithmetic has gained widespread use and today many
general-purpose processors for digital signal processing
(DSPs) implement FP arithmetic units. Unfortunately,
these floating point units require excessive area and design
time even for conventional implementations. Using the
characteristics of VHDL that allow scalability or
reusability, custom floating point formats can be derived
from the IEEE 754/85 [1] format, for individual
applications requirements, reducing the area consumption
and increasing the speed. In [2], the floating point format

was adapted to attend specifications like processor data
path and memory width. The scalability allows the
adjustment of different precisions and ranges, through the
manipulation of the exponent and mantissa sizes.

The use of high-level languages allows the rapid
prototyping in Field Programmable Gate Arrays (FPGAs).
The high programmability and the increased density of
FPGAs are important characteristics when referring to
DSP implementations.

This paper is organized as follows. In Section 2, the
floating point single precision representation is briefly
reviewed. Section 3 describes the basic algorithm for
addition of floating point numbers while in Section 4, a
more time efficient algorithm is described. The algorithm
implementation in FPGA is shown in Section 5.
Improvements in the functional units to achieve a better
performance of the adder are done in Section 6, and the
results obtained are summarized in Section 7.

2. THE FLOATING POINT FORMAT

Figure 1 shows the single precision 32-bit floating point
IEEE 754 format:

 s e m
Bit #: 31 30 23 22 0
Field: Sign exponent mantissa

Figure 1. Floating Point IEEE 754 format

The sign bit (bit 31) represents the sign of the

number. The 8-bit exponent is a signed number, using a
bias of 127. The 23-bit mantissa has a leading bit implied
on the representation (1.m). The value of the floating point
number is given by:

– 1(s) 2(e – 127) (1.m)

In this paper, another floating point format, similar to
the IEEE 754, was used in order to allow a fast
implementation and simulation of the developed algorithm
shown in Section 4. This 8-bit format is composed of a 3-
bit exponent, a 4-bit mantissa and the sign bit. Also, to
compare the implementations of different representations,
a 16-bit format with a 6-bit exponent and a 9-bit mantissa
was implemented. This 16-bit format was used in [2] to a
FIR filter application.

3. ADDITION/SUBTRACTION ALGORITHM

A typical floating point operation takes two inputs with p
bits of precision and returns a p-bit result. According to
the basic algorithm, the exact the result is first computed
and then rounded to p bits. The rounding method used is
the IEEE 754 default, the round-to-nearest mode. The
addition of two floating point number (a1 and a2) can be
divided in four stages, as follows. Figure 2 shows a block
diagram of the algorithm.

Figure 2. Block diagram of the basic algorithm

In Stage 1, the exponents are compared and if e1 < e2,

the operands are swapped. This ensures the difference
between the exponents to be a positive value. If the signs
differ, the two’s complement of m2 is performed. After, m2
is shifted (e1-e2) positions to the right, aligning the binary
point. The first two bits shifted out are set to g (guard) and
r (round), and the s (sticky) are set to the OR of the rest.
The exponent of the result is equal to e1.

In Stage 2, m1 and m2 are added (with the implied
leading bit). If the result is negative, it should be replaced

by its two’s complement. In Stage 3, the result is shifted to
the left until it’s normalized. The exponent is adjusted
according to the number of positions shifted. Finally, the
result is rounded.

In Stage 4, the number is rounded using the round-to-
nearest mode, which adds a one to the least significant bit
according to the following rule: (LSB.r) + (r.s). If the
rounding causes an overflow, replace the mantissa with
zeros and add 1 to the exponent. Determine the sign of the
result.

Although four 24-bit adders are present in the
algorithm, only three sequential additions can even take
place. Unfortunately, it will lead to a low performance of
the floating point adder, and consume a large area (four
24-bit adders). The next section shows an improvement of
this algorithm, in terms of speed and area.

4. THE MODIFIED ALGORITHM

In the modified algorithm, the three necessary additions
(two’s complement, mantissa sum and the rounding) are
combined together and performed in just one step. Figure
3 sows a block diagram of the proposed algorithm).

Three cases are identified, which cover all
possibilities: (1) numbers with same signs, (2) numbers
with different signs and same exponents, and (3) numbers
with different signs and different exponents. The three
possible situations are identified by two bits: the signal bit
(F), which indicates if the signs are different; and
difference bit (D), which indicates if the difference
between the exponents is zero. The major problem is to
identify which operations should be done in each case and
how to define the necessary bits for the rounding step,
since these bits depend on the format of this number after
the mantissas sum.

In each case, two possibilities are again identified. In
order to cover both simultaneously, two data-path are
proposed. Two concurrent assumptions are performed in
parallel, and the correct answer is selected at the end of the
addition. To perform all the additions in one, all the
information necessary for the round-up operation, like the
least significant bit of the sum and the g, r and s bits,
should be determined in advance. So, the round-up can be
done with the mantissas sum. After the sum, the result can
be normalized .

In the first case, the addition of the mantissas may
cause a carry-out or not. The first datapath assumes that no
carry-out has occurred. Since the number will be
normalized, no left shifts will be necessary. The least
significant bit of the sum can be achieved using the least
significant bits of m1 and m2. The second datapath cover
the possibility of carry-out. One right shift normalizes the
numbers, and the LSB can be obtained in advance using
the two least significant bits of m1 and m2.

The second case is simpler than the first one, since
the rounding will never occur (no left shifts). The first
datapath perform (m1 – m2) while the second perform (m2
– m1). The positive answer is selected at the end of the
operation.

The third case combine the two’s complement of
Stage 1, the mantissa sum and the rounding. The first
datapath assumes a normalized result, while the second
assumes the leading bit in any other position of the
mantissa. When the MSB of the sum is known, it selects
the correct result. As in the first case, the LSB of the result
can be obtained from the least significant bits of m1 and
m2.

Figure 3. Block diagram of the modified algorithm

This modified algorithm performs the floating point

sum in one addition, regardless of number format.
Comparing to the first algorithm showed, the number of
fixed-point adders was reduced, although some additional
external logic was incorporated to select the operands of
the two parallel adders.

5. IMPLEMENTATION

The circuits of the adder were described in VHDL, as
structural components. Then a hierarchical structure was
created. The scalability of VHDL allows a fast operand
width adjustment, and different precisions and ranges can
be easily obtained.

A magnitude comparator is employed to compare the
exponents. So, the significand of the smallest number is
always the right shifter input. Two subtractors are present
in the FP adder. One performs exponent subtraction

21 eed −= , determining the required number of right
shifts, while the second adjusts the result exponent during
the normalization step. The programmable right shifter
performs the binary point alignment by shifting S2 to the
right. It also supplies the guard g, round r and sticky s bits
(not shown in the figure) required for rounding.

The main functional unit of the FP adder is the
Parallel Arithmetic Unity (PAU), shown in Figure 4. The
PAU is composed of a duplicated 24-bit wide adder, a
duplicated 2-bit adder and a duplicated carry-in generator.
The significands to be added, and the guard, round and
sticky bits from the programmable right shifter are the
inputs of PAU . The signal F = sig1 ⊕ sig2 and D=OR-
function of all bits from d that PAU are used to identify
the three cases. The 24-bit sum, the carry-out and the
guard bit G, necessary to the normalization step, are the
outputs of PAU.

Figure 4. Parallel Arithmetic Unit - PAU

Inside the PAU, the 2-bit adder has an important function:
generate all rounding information in advance. Depending
on the case, the inputs Ai and Bi and outputs Xi can differ
in meaning and value.

The programmable bi-directional shifter normalizes
the result, after the significand addition. It can shift one bit
to the right or a programmable number of bits to the left.
When right shift is necessary, the high order bit of result
should be filled with the carry-out. When left shift is
necessary, the low order bit is filled with g bit in the first
shift and with zeros in the next ones. The leading bit
position encoder, which locates the position of the leading
bit, generates the number of left shifts N. The exponent
adjustment is performed together with the normalization,
according to the number of bits shifted. If one right shift
has occurred, the exponent should be incremented;
otherwise, decremented of N.

Figure 5. Post Place and Route Simulation

In the Figure 5, the complete functional simulation
can be observed. The operands A and B are
added/subtracted. No errors in the algorithm and in the
implementation were detected.

6. OPTIMIZATIONS

When describing circuits in VHDL, careful about some
aspects should be taken into account. The synthesis tools
are sensitive to behavioral or structural descriptions. One
example is the for-loop which consumes a large area, since
the synthesis tool generates hardware for each iteration
[3]. The if statement is preferred instead, increasing the
speed and reducing the required area. Besides, depending
on the type of adders, better synthesis may be possible,
since the descriptions of each adder can be different.

The fixed-point adders represent the most time and
area consuming in the floating point adder. In order to
achieve faster and smaller circuits, different VHDL codes
were implemented. The first implementation, taken as the
reference, used a ripple-carry adder. The optimization
alternatives used for fixed-point addition were: a carry-
select adder and the adder provided by the synthesis tool
when using the statement S<=A+B. Table 1 and 2 shows
the results obtained.

Table 1. Area optimizations of the

fixed-point adders (in slices)

Carry Select Synthesis Tool operand
size

Ripple
Carry Slices Opt. (%) Slices Opt.

(%)
8 7 9 +28,57 7 0

16 15 19 +26,66 5 –66,67

32 36 46 +27,77 12 –66,67

Table 2. Delay optimizations of the
fixed-point adders (in ns)

Carry Select Synthesis Tool operand

size
Ripple
Carry delay Opt.

(%) delay Opt.
(%)

8 12,577 11,982 –4,73 11,474 –8,76

16 19,763 15,318 –22,49 10,875 –44,97

32 40,595 29,094 –28,33 14,011 –65,48

The fixed-point adder provided by the synthesis tool
has shown the best performance in terms of area and
delay. This is due to the fact that the Spartan-II CLB
supports carry logic [4]. The tool synthesizes the adders in
a carry chain, optimizing the routing channel between the
CLBs. However, for adders up to 7-bit wide, the synthesis
tool didn’t create the carry chain resulting in non-
organized slices that consume an excessive area. This can
be observed in Figure 6. For more than 7-bit wide, the
carry chain produces an almost linear relation between
area/delay and number of bits. The carry-select adder is
another alternative, considering the trade-offs between
consumed area and necessary speed, mainly in the case
where there is no support for the carry logic.

Figure 6. Area and delay of different sizes fixed-point
adders provided by the synthesis tool

When implementing the adder with small size

operands like the 8-bit format proposed, the difference
between the ripple-carry or the synthesis adder
implementation is not visible. The Figure 7 shows a
comparison between different width ripple-carry and
synthesis adder. For the standard IEEE 754 32-bit format,
the optimization can reach 33% in area and 34% in delay.

Figure 7. Area and delay comparison between ripple-
carry and the synthesis tool adder

7. RESULTS

The 8-bit format was chosen for validation of the
algorithm proposed in Section 5. This format reduces the
number of inputs and outputs, which can ease the testing
procedures. The FPGA targeted for implementation was
the Xilinx xc2s200-5pq208 of the Spartan II family. The
synthesis software used in this work was the FPGA
Express from Synopsys, available into the Xilinx ISE 4.2i
environment.

Due to the small size of operands used in the
validation, improvements could not be observed.
Optimization results start to appear for wider operands.
Table 3 summarizes the implementation results.

Table 3. Optimizations of the 8-bit format Floating
Point adder

 Non-Optimized Optimized Optim.
(%)

Area
(slices) 81 81 0

Delay
(ns) 49,069 50,046 +1,95

Type
Delay (ns)

22.152 logic
26.917 route

20.846 logic
29.200 route

–5,895
+8,481

Frequency
(MHz) 20,37 19,98 +1,90

Logic
Levels 26 24 –7,69

Critical
Path

exp_A(0) to
signif_out(4)

exp_A(0) to
signif_out(1) -

8. CONCLUSIONS

A fast single precision floating point adder was developed
and prototyped, using a reduced format of 8-bit operands,
similar to the standard IEEE 754 32-bit operand. An
optimization at algorithm-level was adopted, reducing the
number of sequential fixed-point additions. The proposed
algorithm uses a Parallel Arithmetic Unit, which employs
two parallel datapaths. So, the four fixed-point adders
present in the first algorithm showed are reduced to two
adders and the worst case delay was reduced from three to
one fixed-point addition.

The circuits of the floating point adder were
described in VHDL as structural blocks and placed in a
hierarchical structure. Using the scalability of a high-level
language, different floating point formats can be achieved
to fit the needs of different applications. The exponent and
the mantissa sizes are adjusted to obtain different
precisions and ranges. Optimizations in the VHDL codes

were done to increase the speed and reduce the area
consumed. One of the most time and area consumption
blocks is the fixed-point adder. Different architectures
were tested, some of them reducing the area and others
reducing the delay. The adder with better performance is
the adder produced by the synthesis tool. The Spartan II
FPGA supports carry logic, resulting in small and fast
adders. The optimizations in the adders reduced the logic
delay and increased the route delay, resulting in almost the
same total delay. For larger operands sizes, the
optimizations in area and delay can reach reasonable
values.

9. REFERENCES

[1] IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE754-1985, New York, 1985.

 [2] N. Shirazi, A. Walters, and P. Athanas, “Quantitative
Analysis of Floating Point Arithmetic on FPGA Based Custom
Computing Machines,” IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, California, 1995.

[3] I. O. Flores, M. Jimenez and D. Rodriguez, “Optimizing the
Implemntation of Floating Point Units for FPGA Synthesis”,
Computing Research Conference CRC2002, Mayagüez, Puerto
Rico, 2002.

[4] Xilinx Inc. Spartan-II 2.5V FPGA Family: Functional
Description, 2001.

[5] C. H. Ho, M. P. Leong, J. Becker, M. Glesner, “Rapid
Prototyping of FPGA Based Floating Point DSP Systems”, 13th
IEEE International Workshop on Rapid System
Prototyping (RSP'02), 2002 Darmstadt, Germany, 2002.

[6] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, D.
Poirier, “A Flexible Floating-Point Format for Optimizing Data-
Paths and Operators in FPGA Based DSPs”, FPGA`02,
Monterey, California, USA, 2002.

[7] G. Godoi, F. D. Franke and A. L. Aita, “Design of a Fast
Single Precision Round-to-Nearest Floating-Point Adder”,XVII
SIM – Simpósio Sul de Microeletrônica, Canela, RS, 2002.

[8] M. Glesner and A. Kirschbaum, “State-of-the-Art in Rapid
Prototyping”, SBCCI 98 – XI Brazilian Symposium on Integrated
Circuit Design, Búzios, RJ, Brazil, 1998.

[9] A.Beaumont-Smith, N.Burgess, S. Lefrere and C.C. Lim, in
"Reduced Latency IEEE Floating-Point Standard Adder
Architectures", pp. 35-42, Proceedings of the 14th IEEE
Symposium on Computer Arithmetic, Adelaide, Australia 1999.

[10] M. R. Santoro, G. Bewick, and M. A. Horowitz, in
"Rounding Algorithms for IEEE Multipliers", pp. 176-183,
Proceedings of 9th Symposium on Computer Arithmetic, 1989.

[11] L. Kohn and S.-W. Fu, in "A 1,000,000 transistor
processor", pp. 54-55. IEEE Int’l Solid-State Circuits Conf.,
1989.

[12] D. A. Patterson, in "Computer Architecture: A Quantitative
Approach, J. L. Hennessy", 2nd. Edition, pp. A.13-28, Academic
Press, 1996.

[13] D. A. Patterson, in Organização e Projeto de Computadores
- A Interface Hardware/ Software, J. L. Hennessy, 2nd Edition,
pp. 160-166, Ed. Livros Técnicos e Científicos,(2000.

[14] P. M. Seidel, in "How to half the latency of IEEE compliant
Floating-point Multiplication". In Proceedings of the 24th
Euromicro Conference, volume 24. IEEE,

