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ABSTRACT 

 
The objective of this paper is to present the solution for two classical High-Level Synthesis problems through an approach 
oriented to the automatic exploration of several alternative solutions. The first of them is the problem of scheduling 
operations under physical resource constraints, respecting its precedence order. The second problem is the respective 
allocation of registers, where it is determined how many registers are necessary in the digital circuit to store all values 
produced by some operations until they are consumed by others. This paper describes the implementation of the 
constructive approach and shows promising experimental results. 
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RESUMO 
 
O objetivo deste artigo é apresentar a solução para dois problemas clássicos da Síntese de Alto Nível através de uma 
abordagem orientada à exploração automática de soluções alternativas. O primeiro é o problema de escalonamento de 
operações sob restrição de recursos físicos, respeitando sua ordem de precedência. O segundo problema é a respectiva 
alocação de registradores, cuja solução determina quantos registradores são necessários no circuito digital para armazenar 
todos os valores produzidos por algumas operações até serem consumidas por outras. Este artigo descreve a 
implementação da abordagem construtiva e mostra resultados experimentais promissores. 
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ABSTRACT 

 
The objective of this paper is to present the solution for 
two classical High-Level Synthesis problems through an 
approach oriented to the automatic exploration of several 
alternative solutions. The first of them is the problem of 
scheduling operations under physical resource constraints, 
respecting its precedence order. The second problem is the 
respective allocation of registers, where it is determined 
how many registers are necessary in the digital circuit to 
store all values produced by some operations until they are 
consumed by others. This paper describes the 
implementation of the constructive approach and shows 
promising experimental results. 
 
 

1. INTRODUCTION 
 
Several applications like mobile phones, household 
appliances, consumer electronics, etc., are based on 
embedded computing systems. A typical embedded 
system consists of a processor, memory and possibly an 
application-specific integrated circuit (ASIC).  

Starting from a specification, the design of an ASIC 
consists of some development stages:  The synthesis, the 
validation and the test of functioning. In this process, the 
major step is High-Level Synthesis (HLS), which is the 
automatic synthesis of the architectural structure of a 
digital circuit from an algorithmic specification of its 
behavior [3]. Behavior is described using a hardware 
description language (HDL). 

Among the main High-Level Synthesis steps are 
allocation, which determines how many resources are 
needed and scheduling, which defines when operations are 
executed. Operations (addition, subtraction, comparison, 
etc.) are associated with resources that can be classified in 
functional units (adder, ALU, multiplier,...), storage units 

(register, memory,...) and interconnection units (bus, 
multiplexers,...). 

When the number of resources of each type is defined 
before synthesis, we say that the digital system must 
satisfy resource constraints. 

Data-dependencies within a HDL description impose 
precedence constraints. Such constraints are modeled by a 
data-flow graph (DFG), where the vertices represent 
operations and the edges represent data-dependencies. 

The result of the HLS is a datapath and a controller, 
which are modeled by distinct graphs: the data-path graph 
(DPG) and the state-machine graph (SMG), respectively. 
The DPG models a network of functional units and 
registers, showing the occupation of resources by 
operations. The SMG describes a symbolic state machine 
for the controller. It shows in which state each operation is 
executed. The Figure 1 shows an overview of HLS. 
 
 
 
 
 
 
 
 

Figure 1: High-Level Synthesis Modeling. 
 

This paper tackles two classical HLS problems: the 
scheduling of operations and the allocation of registers. 
Both problems are solved by an approach oriented to the 
automatic exploration of several alternative solutions. 

Above are summarized the main contributions of this 
paper: 

The approach used to solve the problems of 
scheduling and allocation is not based on the use of 
heuristics that limit the generation of only one solution, 

DDeessccrriippttiioonn  
iinn  HHDDLL  

DDFFGG

DDPPGG SSMMGG

Compilation 

Scheduling Allocation



but allows the exploration of several alternative solutions, 
with the objective to obtain solutions of better quality. 

Instead of limiting to schedule operations along the 
time, the scheduler presented here, associates operations 
directly with states, constructing the symbolic state 
machine of the controller progressively during the 
scheduling.This allows the use of the number of states as 
metric to evaluate the quality of the solutions, what is not 
supported by methods where the scheduling is treated as 
an order in a lineal sequence of steps. 

The remainder of this article is organized of the 
following form: The Section 2 presents the modeling of 
the proposed problems and presents one brief 
bibliographical revision. The Section 3 discusses a general 
vision of the adopted approach, showing the used 
techniques. The Section 4 describes the implementation of 
the approach, the accomplished experiments and the 
obtained results. The conclusions and the perspectives of 
continuity of the research in futures works are discussed in 
the Section 5. 
 

2. MODELING AND PROBLEM FORMULATION 
 
2.1. Basic definitions 
 
Definition 1 - A polar data flow graph DFG(V,E) is a 
directed graph where each vertex vi  V represents an 
operation and where each edge (vi, vj)  E represents a 
data dependence between vi e vj.  The poles v0 e vn are 
called source and sink, respectively.  
Definition 2 - A polar state-machine graph SMG(S,T) is a 
directed graph where each vertex vertex si  S represents 
a state and where each edge (ti, tj)  T represents a 
transition between states si e sj. The poles s0 e sn are called 
source and sink, respectively. 
Definition 3 - A polar data-path graph DPG(C,W) is a 
directed graph where each vertex vertex ci  C represents 
a functional unit and where each edge (wi, wj)  W 
represents a interconnection between units ci e cj. The 
poles c0 e cn are called source and sink, respectively. 
Definition 4 - A resource constraint vector a is a vector 
where each component ak represents the number of 
functional units available of a given type k  {1, 2, ... 
nres}.  
Definition 5 – Let so, s1, ... , sk, ... , sn be successive states 
in the SMG. The latency  of the SMG is equal to the 
number n-1 of states between the source s0 and the sink sn. 
Definition 6 - The chromatic number  is the minimum 
number of colors needed to solve a vertex-coloring 
problem of a given graph. 
 
2.2. The Scheduling Problem 
 
Scheduling consists in finding an ordering in time for the 
operations such that precedence and resource constraints 

are both satisfied. The goal is to find a solution to 
minimize the latency . 

The Figure 2 shows a behavioral description and its 
corresponding DFG. Assuming the following restriction of 
resources: one instance of the operator ALU and two 
multipliers, a possible solution for the example of Figure 
2a can be found in Figure 2b. Horizontal lines depict 
different clock cycles. Each clock cycle represents the 
duration of a state. The execution of an operation in a 
resource requires an interval known as execution delay, 
which is expressed in terms of clock cycles. The poles of 
the DFG represent primary inputs and outputs and have 
zero execution delay. The time when an operation finishes 
is given as its initial execution time plus its execution 
delay. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: (a) Behavioral description and  
(b) Scheduled DFG (  = 5). 

 
2.3. The Register Allocation Problem 
 
Given an edge of a DFG, it is associated with a value 
which is produced by the vertex at its tail and consumed 
by the vertex at its head. Given a state the values that must 
be consumed in the next state must be stored in registers. 
Therefore, each value can be associated with a lifetime 
interval, which starts in the state in which it is produced 

 ... 
(A) a = b * c; 
(B)  d = e * f; 
(C, D) g = a * d – h;   
(E,F,G) i = g – j * k * l; 
(H,I) m = n * o + p; 
(J) q = r + s;  
(K) if  (q<t) then {...} 
 ... 
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and finishes in the state where it is at last consumed. If 
two or more values have disjoint lifetime intervals, they 
can share a same register in distinct time intervals. 
Therefore, it is possible to minimize the amount of needed 
registers, reducing circuit area and fabrication costs. 

Initially, it is necessary to associate each DFG edge 
with a value. Primary inputs lifetime intervals are omitted 
since its values are supposed to be always available. 
Figure 2b shows a scheduled DFG where the edges are 
labeled. The underlying assumption is that values must be 
preserved until the fifth cycle only. It is possible to find 
the minimum number of registers by means of vertex-
coloring. Each color corresponds to a distinct register. 
Therefore, the chromatic number  is equal to the 
minimum number of registers. 

An efficient algorithm to obtain  is the so-called left-
edge algorithm [4]. Figure 3a shows the lifetime intervals 
for the edges labeled in Figure 2b. When two or more 
intervals are disjoint, they can occupy the same register 
and the respective values are said to be compatible. 
Incompatibility can be represented by means of a conflict 
graph, which is shown in Figure 3b, where each vertex 
represents a lifetime interval and each edge represents a 
conflict between incompatible values. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3: Lifetime intervals and their conflict graph for 
the example in Figure 2b.  

 
 
 

2.4. Brief Literature Review 
 
On the one hand, resource constrained scheduling is an 
intractable problem, which means that no polynomial 
algorithm is expected to always found an optimal solution. 
On the other hand, given a schedule, register allocation 
can be solved by polynomial algorithms in some special 
cases [4]. For this reason, the use of exact algorithms is 
limited to small instances of the scheduling problem, 
otherwise the computational effort would be prohibitive. 
An example of an exact method is Integer Linear 
Programming (ILP) [4]. A second approach is the use of 
approximate algorithms, which may come up with 
acceptable solutions yet not always optimal. In this case, 
operations are scheduled according to a priority list, which 
is obtained by means of an heuristic criterion. Examples of 
heuristic scheduling techniques are List Scheduling and 
Force-Directed Scheduling [4]. These techniques can 
generate high-quality solutions. However, their deficiency 
is that, since they generate a single solution, if it turned to 
be of unacceptable quality, there would be no way of 
exploring alternative solutions of better quality. Since 
embedded systems tend to be specified with tight 
constraints, it becomes important to support design space 
exploration. This motivates an approach oriented to the 
exploration of alternative solutions, such an approach is 
described in the next section. 
 

3. AN APPROACH ORIENTED TO AUTOMATIC 
EXPLORATION 

 
To increase the chances of finding a good solution within 
an acceptable time, it is desirable to explore several 
solutions, but without falling on an exhaustive search. 
This approach tries to make a trade-off between search 
time and solution quality. It is possible to explore several 
alternative solutions by defining a priority encoding to 
break ties in operation selection during scheduling [10]. A 
priority encoding is a permutation  of the operations in 
the DFG. The relative position of operations in set  is 
associated with their priority. For instance, if operations u 
and v compete for the same resource and u precedes v in 
the permutation, then operation u is selected to occupy the 
resource. 

Different priority encodings result in solutions with 
possibly distinct costs. Therefore, the cost optimization 
can be supported by automatic monitoring costs of 
different explored solutions and by finally choosing the 
one with lowest cost. In the literature, several methods can 
be found to generate priority encodings (e.g. genetic 
algorithms, simulated annealing, etc.). To build solutions 
from priority encodings, we use the algorithm proposed by 
Aiken et al.[1], which was adapted to explore several 
alternative solutions [10]. 

Our approach consists of an explorer engine and a 
constructor engine, as shown in Figure 4. The explorer 
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restricts itself to generate priority encodings  and 
analyze the corresponding solution cost. The constructor 
builds up a solution for each  and returns its cost to the 
explorer. 

 
 

 
 

 
 
 
 
 
 

 
Figure 4: An overview of our approach. 

 
The constructor consists of a parallelizer and a 

scheduler. The parallelizer creates a current state (sk) 
where operations are to be scheduled. When all possible 
operations are scheduled within the current state, the 
parallelizer creastes a next state (sk+1). In this way, the 
SMG is created step-by-step until there are no more 
operations to be scheduled. The parallelizer keeps a set of 
operations ready to be schedule on entry to each state, 
which are called ready operations. The set of ready 
operations associated with state sk is denoted by Ak. The 
constrained resources require selection of operations of 
higher priority. The set Ak is implemented so as to 
maintain its elements ordered according to the priority 
encoding .  

The scheduler selects from the elements of Ak, the 
operations to be scheduled in state sk, according to the 
priority  and the available number of resources. It 
returns a set of scheduled operations in the current state, 
represented by OPk. That is repeated until all the available 
resources are busy in the state sk or until Ak is empty, 
indicating that all the operations of DFG were scheduled. 

A great advantage is the separation of different 
functionalities in distincts engines. This allow further 
tuning, since one engine can be modified or replaced 
without the need to change the other. (For instance, an 
explorer based on genetic algorithms could be replaced by 
another based on simulated annealing; the constructor 
could be modified to include various kinds of pruning 
techniques). Another advantage is that the approach 
allows to trade search time against solution quality, since 
the number of explored solutions can be, in general, 
controlled by the parameters of the search method. 
 

4. IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

 
 

4.1. Implementation 
 
A prototype was developed in the frame of the so-called 
OASIS Project: "Modeling, Synthesis and Optimization of 
Architectures for Digital Systems." The target platform is 
a microcomputer PC under Linux Operating System. The 
adopted language is C++.  

To solve the scheduling problem, Algoritm 1 was 
implemented. 

 

Algorithm 1: Scheduling Algorithm. 
 

Given a priority encoding , Algorithm 1 creates a 
SMG out of a DFG under resource constraints a, by 
calling procedure Schedule(a, ). The algorithm 
schedules a current state sk by associating with it as many 
operations as can be accommodated within the available 
resources during a clock cycle. When no more operations 
can be scheduled in sk, the next state sk+1 is created, which 
will become the current state in the next loop iteration. 
Therefore, operations are scheduled in successive states 
until there are no more operations to be scheduled. As a 
state corresponds to a clock cycle, the latency  is 
incremented of one at each new scheduled state. The 
scheduling of the current state is performed by function 
ScheduleState (sk, Ak, a, ), which schedules operations 
in Ak, while there are ready operations or available 
resources. Such function returns the set of operations 
scheduled in the current state (OPk). The selection of one 
operation is performed by function SelectOperation(Ak, 

ScheduleState (sk, Ak, a, ) { 
OPk = ; 
vi = SelectOperation (Ak, a, ); 
while (vi  none) do { 

schedule vi in sk; 
OPk = OPk  {vi}; 
delete vi from Ak; 

} 
retorn (OPk); 

} 
Schedule(a, ) { 

 = 0; create initial state s0 in the SMG; 
A0 = {vi| vo is the only predecessor of vi in the DFG};
next = s0; 
while (next  none) do{ 

sk = next; 
OPk = ScheduleState (sk, Ak, a, ); 
 =  + 1; 

P = FindReadyOperations (OPk); P = P  Ak; 
If (P  ) { 

Create a new state sk+1 in the SMG; 
Ak+1 = P; 
next = sk+1; 

} else { next = none; } 
} 
retorn ( ); 

} 

Cost 
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a, ), which returns na operation vi  Ak with higher 
priority  that satisfies the resource constraints a. After a 
state sk is scheduled, new operations can become ready, as 
a result of the operations scheduled in that state (OPk). 
Such operations are evaluated by function 
FindReadyOperations (OPk). 

To solve the registers allocation problem, the left-edge 
algorithm were implemented, it is well-known and can be 
found in [4]. 
 
4.2. Experimental Results 
 
For our experiments, two classical examples of the HLS 
literature were choosen: fdct [8] and wdelf [5]. Tables 1 
and 2 summarize our results for scheduling. Observe that 
the values of  obtained in our approach are similar or 
better than those obtained by other methods. To obtain our 
values, 100 solutions were explored and the solution with 
the best latency was taken. The time to build and explore 
the 100 solutions depends on the constraints and varies 
from 5 to 20s on a Pentium III, 450 MHz. The execution 
delay considered for the operations of ALUs is unitary and 
for the multiplications it is the same to two clock cycles. 
 

Table 1: Latency for example fdct. 
MUL ALU  in [6]  

Optimum 
Solution 

  in ours 
approach 

 in [6] 
 Genetics 
Algorit. 

 in [6] 
List 

Sched. 
8 4 8 8 8 8 
5 4 10 10 10 10 
4 3 11 11 11 13 
4 2 13 13 13 15 
3 2 14 15 14 17 
2 2 18 19 18 21 
2 1 26 26 26 27 
1 1 34 34 34 40 

 
Table 2: Latency for example wdelf. 

MUL ALU  in [6]  
Optimum 
Solution 

  in ours 
approach 

 in [6] 
 Genetics 
Algorit. 

 in [6] 
List 

Sched. 
3 3 17 17 17 17 
2 2 18 18 18 19 
1 2 21 21 21 22 
1 1 28 28 28 28 

 
Tables 3 and 4 compare our results for register 

optimization with other methods. Our values for  
overestimate the amount of registers up to a maximum of 
20% for the example fdct, (Table 3) and a maximum of 
50% for the example wdelf (Table 4).  These results point 
out the need of a more elaborate exploring scheme. The 
explorer should guide the search towards solutions with 
same latency, but with distinct number of registers. Such a 

refinement would probably mitigate (or hopefully avoid) 
register overestimation. 
 

Table 3: Number of registers for fdct. 
Our 

approach
Genetics 
Algorit.  

in [7] 

List 
Scheduler 

 in [7] 

MUL ALU

      
3 2 15 12 14 10 17 12 
2 2 19 12 18 13 21 11 

 
Table 4: Number of registers for wdelf. 

Our 
approach

Symbolic 
in [8] 

TASS in 
[2] 

MUL ALU

      
3 3 17 11 17 10 17 9 
2 2 18 11 18 10 18 8 
1 2 21 9 21 10 21 6 
1 1 28 9 28 10 28 6 

 
5. CONCLUSIONS AND FUTURE WORK 

 
The results obtained are of a good quality, when compared 
with other methods reported in the literature. However, as 
expected, the optimal solutions is not found in all cases, 
since we are not using exact techniques, which could lead 
to an exhaustive search of solutions. We use polynomial 
algorithms based on lists ordered by heuristic criteria. 
Although we can not guarantee an optimal solution, our 
approach allows a trade-off between solution quality and 
acceptable runtimes.  

In the future, we intend to improve the generation of 
priority encodings so as to use evolutionary techniques for 
obtaining the ordering in . This will allow the generation 
of encodings that progressively lead to better solutions, so 
as to obtain convergence towards the optimal solution. We 
believe that a more elaborate exploring scheme can allows 
us to reach lower values of , avoiding the over-estimates 
in Tables 3 and 4. 
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