
AUTOMATIC EXPLORATION APPROACH FOR SCHEDULING AND
REGISTERS OPTIMIZATION IN HIGH-LEVEL SYNTHESIS

Rogério Xavier de Azambuja Dione Jonathan Ferrari Luiz C. V. dos Santos

UFSC1 – ULBRA Santa Maria2 UFSC1 UFSC1

1UFSC – Universidade Federal de Santa Catarina
INE/CTC/LAPS – P.O. Box 476 – 88010-970 – Florianópolis/SC, Brazil

{xavier, dione, santos}@inf.ufsc.br

2ULBRA Santa Maria – Universidade Luterana do Brasil
P.O. Box 21834 – 97020-001 – Santa Maria /RS – Brazil

ABSTRACT

The objective of this paper is to present the solution for two classical High-Level Synthesis problems through an approach
oriented to the automatic exploration of several alternative solutions. The first of them is the problem of scheduling
operations under physical resource constraints, respecting its precedence order. The second problem is the respective
allocation of registers, where it is determined how many registers are necessary in the digital circuit to store all values
produced by some operations until they are consumed by others. This paper describes the implementation of the
constructive approach and shows promising experimental results.

KEYWORDS

High-Level Synthesis, Scheduling, Register allocation.

RESUMO

O objetivo deste artigo é apresentar a solução para dois problemas clássicos da Síntese de Alto Nível através de uma
abordagem orientada à exploração automática de soluções alternativas. O primeiro é o problema de escalonamento de
operações sob restrição de recursos físicos, respeitando sua ordem de precedência. O segundo problema é a respectiva
alocação de registradores, cuja solução determina quantos registradores são necessários no circuito digital para armazenar
todos os valores produzidos por algumas operações até serem consumidas por outras. Este artigo descreve a
implementação da abordagem construtiva e mostra resultados experimentais promissores.

PALAVRAS-CHAVE

Síntese de Alto Nível, Escalonamento, Alocação de registradores.

AUTOMATIC EXPLORATION APPROACH FOR SCHEDULING AND
REGISTERS OPTIMIZATION IN HIGH-LEVEL SYNTHESIS

Rogério Xavier de Azambuja Dione Jonathan Ferrari Luiz C. V. dos Santos

UFSC1 – ULBRA Santa Maria2 UFSC1 UFSC1

1UFSC – Universidade Federal de Santa Catarina
INE/CTC/LAPS – P.O. Box 476 – 88010-970 – Florianópolis/SC, Brazil

{xavier, dione, santos}@inf.ufsc.br

2ULBRA Santa Maria – Universidade Luterana do Brasil
P.O. Box 21834 – 97020-001 – Santa Maria /RS – Brazil

ABSTRACT

The objective of this paper is to present the solution for
two classical High-Level Synthesis problems through an
approach oriented to the automatic exploration of several
alternative solutions. The first of them is the problem of
scheduling operations under physical resource constraints,
respecting its precedence order. The second problem is the
respective allocation of registers, where it is determined
how many registers are necessary in the digital circuit to
store all values produced by some operations until they are
consumed by others. This paper describes the
implementation of the constructive approach and shows
promising experimental results.

1. INTRODUCTION

Several applications like mobile phones, household
appliances, consumer electronics, etc., are based on
embedded computing systems. A typical embedded
system consists of a processor, memory and possibly an
application-specific integrated circuit (ASIC).

Starting from a specification, the design of an ASIC
consists of some development stages: The synthesis, the
validation and the test of functioning. In this process, the
major step is High-Level Synthesis (HLS), which is the
automatic synthesis of the architectural structure of a
digital circuit from an algorithmic specification of its
behavior [3]. Behavior is described using a hardware
description language (HDL).

Among the main High-Level Synthesis steps are
allocation, which determines how many resources are
needed and scheduling, which defines when operations are
executed. Operations (addition, subtraction, comparison,
etc.) are associated with resources that can be classified in
functional units (adder, ALU, multiplier,...), storage units

(register, memory,...) and interconnection units (bus,
multiplexers,...).

When the number of resources of each type is defined
before synthesis, we say that the digital system must
satisfy resource constraints.

Data-dependencies within a HDL description impose
precedence constraints. Such constraints are modeled by a
data-flow graph (DFG), where the vertices represent
operations and the edges represent data-dependencies.

The result of the HLS is a datapath and a controller,
which are modeled by distinct graphs: the data-path graph
(DPG) and the state-machine graph (SMG), respectively.
The DPG models a network of functional units and
registers, showing the occupation of resources by
operations. The SMG describes a symbolic state machine
for the controller. It shows in which state each operation is
executed. The Figure 1 shows an overview of HLS.

Figure 1: High-Level Synthesis Modeling.

This paper tackles two classical HLS problems: the
scheduling of operations and the allocation of registers.
Both problems are solved by an approach oriented to the
automatic exploration of several alternative solutions.

Above are summarized the main contributions of this
paper:

The approach used to solve the problems of
scheduling and allocation is not based on the use of
heuristics that limit the generation of only one solution,

DDeessccrriippttiioonn
iinn HHDDLL

DDFFGG

DDPPGG SSMMGG

Compilation

Scheduling Allocation

but allows the exploration of several alternative solutions,
with the objective to obtain solutions of better quality.

Instead of limiting to schedule operations along the
time, the scheduler presented here, associates operations
directly with states, constructing the symbolic state
machine of the controller progressively during the
scheduling.This allows the use of the number of states as
metric to evaluate the quality of the solutions, what is not
supported by methods where the scheduling is treated as
an order in a lineal sequence of steps.

The remainder of this article is organized of the
following form: The Section 2 presents the modeling of
the proposed problems and presents one brief
bibliographical revision. The Section 3 discusses a general
vision of the adopted approach, showing the used
techniques. The Section 4 describes the implementation of
the approach, the accomplished experiments and the
obtained results. The conclusions and the perspectives of
continuity of the research in futures works are discussed in
the Section 5.

2. MODELING AND PROBLEM FORMULATION

2.1. Basic definitions

Definition 1 - A polar data flow graph DFG(V,E) is a
directed graph where each vertex vi V represents an
operation and where each edge (vi, vj) E represents a
data dependence between vi e vj. The poles v0 e vn are
called source and sink, respectively.
Definition 2 - A polar state-machine graph SMG(S,T) is a
directed graph where each vertex vertex si S represents
a state and where each edge (ti, tj) T represents a
transition between states si e sj. The poles s0 e sn are called
source and sink, respectively.
Definition 3 - A polar data-path graph DPG(C,W) is a
directed graph where each vertex vertex ci C represents
a functional unit and where each edge (wi, wj) W
represents a interconnection between units ci e cj. The
poles c0 e cn are called source and sink, respectively.
Definition 4 - A resource constraint vector a is a vector
where each component ak represents the number of
functional units available of a given type k {1, 2, ...
nres}.
Definition 5 – Let so, s1, ... , sk, ... , sn be successive states
in the SMG. The latency of the SMG is equal to the
number n-1 of states between the source s0 and the sink sn.
Definition 6 - The chromatic number is the minimum
number of colors needed to solve a vertex-coloring
problem of a given graph.

2.2. The Scheduling Problem

Scheduling consists in finding an ordering in time for the
operations such that precedence and resource constraints

are both satisfied. The goal is to find a solution to
minimize the latency .

The Figure 2 shows a behavioral description and its
corresponding DFG. Assuming the following restriction of
resources: one instance of the operator ALU and two
multipliers, a possible solution for the example of Figure
2a can be found in Figure 2b. Horizontal lines depict
different clock cycles. Each clock cycle represents the
duration of a state. The execution of an operation in a
resource requires an interval known as execution delay,
which is expressed in terms of clock cycles. The poles of
the DFG represent primary inputs and outputs and have
zero execution delay. The time when an operation finishes
is given as its initial execution time plus its execution
delay.

Figure 2: (a) Behavioral description and
(b) Scheduled DFG (= 5).

2.3. The Register Allocation Problem

Given an edge of a DFG, it is associated with a value
which is produced by the vertex at its tail and consumed
by the vertex at its head. Given a state the values that must
be consumed in the next state must be stored in registers.
Therefore, each value can be associated with a lifetime
interval, which starts in the state in which it is produced

 ...
(A) a = b * c;
(B) d = e * f;
(C, D) g = a * d – h;
(E,F,G) i = g – j * k * l;
(H,I) m = n * o + p;
(J) q = r + s;
(K) if (q<t) then {...}
 ...

(a)

Source

A B

C F

G

*

* *

*

*

H

I+

*

J

K<

+

E

-

Sink

D

State 1

State 2

State 3

State 4

State 5

E11
E8

E10 E2 E1

E3

E7 E4

E5
E9

-

E6

(b)

and finishes in the state where it is at last consumed. If
two or more values have disjoint lifetime intervals, they
can share a same register in distinct time intervals.
Therefore, it is possible to minimize the amount of needed
registers, reducing circuit area and fabrication costs.

Initially, it is necessary to associate each DFG edge
with a value. Primary inputs lifetime intervals are omitted
since its values are supposed to be always available.
Figure 2b shows a scheduled DFG where the edges are
labeled. The underlying assumption is that values must be
preserved until the fifth cycle only. It is possible to find
the minimum number of registers by means of vertex-
coloring. Each color corresponds to a distinct register.
Therefore, the chromatic number is equal to the
minimum number of registers.

An efficient algorithm to obtain is the so-called left-
edge algorithm [4]. Figure 3a shows the lifetime intervals
for the edges labeled in Figure 2b. When two or more
intervals are disjoint, they can occupy the same register
and the respective values are said to be compatible.
Incompatibility can be represented by means of a conflict
graph, which is shown in Figure 3b, where each vertex
represents a lifetime interval and each edge represents a
conflict between incompatible values.

Figure 3: Lifetime intervals and their conflict graph for
the example in Figure 2b.

2.4. Brief Literature Review

On the one hand, resource constrained scheduling is an
intractable problem, which means that no polynomial
algorithm is expected to always found an optimal solution.
On the other hand, given a schedule, register allocation
can be solved by polynomial algorithms in some special
cases [4]. For this reason, the use of exact algorithms is
limited to small instances of the scheduling problem,
otherwise the computational effort would be prohibitive.
An example of an exact method is Integer Linear
Programming (ILP) [4]. A second approach is the use of
approximate algorithms, which may come up with
acceptable solutions yet not always optimal. In this case,
operations are scheduled according to a priority list, which
is obtained by means of an heuristic criterion. Examples of
heuristic scheduling techniques are List Scheduling and
Force-Directed Scheduling [4]. These techniques can
generate high-quality solutions. However, their deficiency
is that, since they generate a single solution, if it turned to
be of unacceptable quality, there would be no way of
exploring alternative solutions of better quality. Since
embedded systems tend to be specified with tight
constraints, it becomes important to support design space
exploration. This motivates an approach oriented to the
exploration of alternative solutions, such an approach is
described in the next section.

3. AN APPROACH ORIENTED TO AUTOMATIC
EXPLORATION

To increase the chances of finding a good solution within
an acceptable time, it is desirable to explore several
solutions, but without falling on an exhaustive search.
This approach tries to make a trade-off between search
time and solution quality. It is possible to explore several
alternative solutions by defining a priority encoding to
break ties in operation selection during scheduling [10]. A
priority encoding is a permutation of the operations in
the DFG. The relative position of operations in set is
associated with their priority. For instance, if operations u
and v compete for the same resource and u precedes v in
the permutation, then operation u is selected to occupy the
resource.

Different priority encodings result in solutions with
possibly distinct costs. Therefore, the cost optimization
can be supported by automatic monitoring costs of
different explored solutions and by finally choosing the
one with lowest cost. In the literature, several methods can
be found to generate priority encodings (e.g. genetic
algorithms, simulated annealing, etc.). To build solutions
from priority encodings, we use the algorithm proposed by
Aiken et al.[1], which was adapted to explore several
alternative solutions [10].

Our approach consists of an explorer engine and a
constructor engine, as shown in Figure 4. The explorer

(a)

E1 E1

E6

E4 E7

E5

E2

E3

E8

E1

E4

E7

E5 E8

E3

E6 E11

E1

E2 E10

(b)

restricts itself to generate priority encodings and
analyze the corresponding solution cost. The constructor
builds up a solution for each and returns its cost to the
explorer.

Figure 4: An overview of our approach.

The constructor consists of a parallelizer and a

scheduler. The parallelizer creates a current state (sk)
where operations are to be scheduled. When all possible
operations are scheduled within the current state, the
parallelizer creastes a next state (sk+1). In this way, the
SMG is created step-by-step until there are no more
operations to be scheduled. The parallelizer keeps a set of
operations ready to be schedule on entry to each state,
which are called ready operations. The set of ready
operations associated with state sk is denoted by Ak. The
constrained resources require selection of operations of
higher priority. The set Ak is implemented so as to
maintain its elements ordered according to the priority
encoding .

The scheduler selects from the elements of Ak, the
operations to be scheduled in state sk, according to the
priority and the available number of resources. It
returns a set of scheduled operations in the current state,
represented by OPk. That is repeated until all the available
resources are busy in the state sk or until Ak is empty,
indicating that all the operations of DFG were scheduled.

A great advantage is the separation of different
functionalities in distincts engines. This allow further
tuning, since one engine can be modified or replaced
without the need to change the other. (For instance, an
explorer based on genetic algorithms could be replaced by
another based on simulated annealing; the constructor
could be modified to include various kinds of pruning
techniques). Another advantage is that the approach
allows to trade search time against solution quality, since
the number of explored solutions can be, in general,
controlled by the parameters of the search method.

4. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

4.1. Implementation

A prototype was developed in the frame of the so-called
OASIS Project: "Modeling, Synthesis and Optimization of
Architectures for Digital Systems." The target platform is
a microcomputer PC under Linux Operating System. The
adopted language is C++.

To solve the scheduling problem, Algoritm 1 was
implemented.

Algorithm 1: Scheduling Algorithm.

Given a priority encoding , Algorithm 1 creates a
SMG out of a DFG under resource constraints a, by
calling procedure Schedule(a,). The algorithm
schedules a current state sk by associating with it as many
operations as can be accommodated within the available
resources during a clock cycle. When no more operations
can be scheduled in sk, the next state sk+1 is created, which
will become the current state in the next loop iteration.
Therefore, operations are scheduled in successive states
until there are no more operations to be scheduled. As a
state corresponds to a clock cycle, the latency is
incremented of one at each new scheduled state. The
scheduling of the current state is performed by function
ScheduleState (sk, Ak, a,), which schedules operations
in Ak, while there are ready operations or available
resources. Such function returns the set of operations
scheduled in the current state (OPk). The selection of one
operation is performed by function SelectOperation(Ak,

ScheduleState (sk, Ak, a,) {
OPk = ;
vi = SelectOperation (Ak, a,);
while (vi none) do {

schedule vi in sk;
OPk = OPk {vi};
delete vi from Ak;

}
retorn (OPk);

}
Schedule(a,) {

 = 0; create initial state s0 in the SMG;
A0 = {vi| vo is the only predecessor of vi in the DFG};
next = s0;
while (next none) do{

sk = next;
OPk = ScheduleState (sk, Ak, a,);
 = + 1;

P = FindReadyOperations (OPk); P = P Ak;
If (P) {

Create a new state sk+1 in the SMG;
Ak+1 = P;
next = sk+1;

} else { next = none; }
}
retorn ();

}

Cost

OP

Explorer

Constructor

Parallelizer

A

Scheduler

OP

a,), which returns na operation vi Ak with higher
priority that satisfies the resource constraints a. After a
state sk is scheduled, new operations can become ready, as
a result of the operations scheduled in that state (OPk).
Such operations are evaluated by function
FindReadyOperations (OPk).

To solve the registers allocation problem, the left-edge
algorithm were implemented, it is well-known and can be
found in [4].

4.2. Experimental Results

For our experiments, two classical examples of the HLS
literature were choosen: fdct [8] and wdelf [5]. Tables 1
and 2 summarize our results for scheduling. Observe that
the values of obtained in our approach are similar or
better than those obtained by other methods. To obtain our
values, 100 solutions were explored and the solution with
the best latency was taken. The time to build and explore
the 100 solutions depends on the constraints and varies
from 5 to 20s on a Pentium III, 450 MHz. The execution
delay considered for the operations of ALUs is unitary and
for the multiplications it is the same to two clock cycles.

Table 1: Latency for example fdct.
MUL ALU in [6]

Optimum
Solution

 in ours
approach

 in [6]
 Genetics
Algorit.

 in [6]
List

Sched.
8 4 8 8 8 8
5 4 10 10 10 10
4 3 11 11 11 13
4 2 13 13 13 15
3 2 14 15 14 17
2 2 18 19 18 21
2 1 26 26 26 27
1 1 34 34 34 40

Table 2: Latency for example wdelf.

MUL ALU in [6]
Optimum
Solution

 in ours
approach

 in [6]
 Genetics
Algorit.

 in [6]
List

Sched.
3 3 17 17 17 17
2 2 18 18 18 19
1 2 21 21 21 22
1 1 28 28 28 28

Tables 3 and 4 compare our results for register

optimization with other methods. Our values for
overestimate the amount of registers up to a maximum of
20% for the example fdct, (Table 3) and a maximum of
50% for the example wdelf (Table 4). These results point
out the need of a more elaborate exploring scheme. The
explorer should guide the search towards solutions with
same latency, but with distinct number of registers. Such a

refinement would probably mitigate (or hopefully avoid)
register overestimation.

Table 3: Number of registers for fdct.
Our

approach
Genetics
Algorit.

in [7]

List
Scheduler

 in [7]

MUL ALU

3 2 15 12 14 10 17 12
2 2 19 12 18 13 21 11

Table 4: Number of registers for wdelf.

Our
approach

Symbolic
in [8]

TASS in
[2]

MUL ALU

3 3 17 11 17 10 17 9
2 2 18 11 18 10 18 8
1 2 21 9 21 10 21 6
1 1 28 9 28 10 28 6

5. CONCLUSIONS AND FUTURE WORK

The results obtained are of a good quality, when compared
with other methods reported in the literature. However, as
expected, the optimal solutions is not found in all cases,
since we are not using exact techniques, which could lead
to an exhaustive search of solutions. We use polynomial
algorithms based on lists ordered by heuristic criteria.
Although we can not guarantee an optimal solution, our
approach allows a trade-off between solution quality and
acceptable runtimes.

In the future, we intend to improve the generation of
priority encodings so as to use evolutionary techniques for
obtaining the ordering in . This will allow the generation
of encodings that progressively lead to better solutions, so
as to obtain convergence towards the optimal solution. We
believe that a more elaborate exploring scheme can allows
us to reach lower values of , avoiding the over-estimates
in Tables 3 and 4.

6. REFERENCES

[1] AIKEN, A.; NICOLAU, A. “A Resource-

Constrained Software Pipelining”, IEEE
Transactions on Parallel and Distributed Systems,
vol. 6, nº 12, december of 1995.

[2] AMELLAL, Said; KAMINSKA, Bozena
“Functional Synthesis of Digital Systems with
TASS”, IEEE Transactions on Computer-Aided
Design, vol. 13, nº 5, pp. 537-552, may of 1994.

[3] CAMPOSANO, R. “Path-based Scheduling for
Syntesis”, IEEE Trans. On Computer-Aided
Design, vol 10, nº 1, january of 1991.

[4] De MICHELI, Giovanni “Synthesis and

Optimization of Digital Circuits”, Mc Graw-Hill,
USA, 1994.

[5] DEWILDE et. al. “Parallel and Pipelined VLSI
Implementation of Signal Processing Algorithms”,
in S.Y. Kung, H.J. Whitehouse and T. Kailath,
VLSI and Modern Signal Processing. Prentice
Hall, USA, 1985.

[6] HEIJLIGERS, M.J.M.; CLUITMANS, L.J.M. &
Jess, J.A.G. “High-Level Synthesis Scheduling
and Allocation using Genetic Algorithms”,
Proceedings of the Asia and South Pacific Design
Automation Conference, pp. 61-66, 1995.

[7] HEIJLIGERS, M.J.M. “The Application of
Genetic Algorithms to High-Level Synthesis”,
PhD. Thesis, Eindhoven University of
Technology, The Netherlands, pp. 116, 1996.

[8] MALLON, D. J.; DENYER, P. B. “A New
Approach to Pipeline Optimization”, Proc.
EDAC’90m OO, 1990.

[9] RADIVOJEVIC, I.; BREWER, F. “A New
Symbolic Technique for Control Dependent
Scheduling”, IEEE Transactions on Computer-
Aided Design, vol. 15, nº 1, p. 53 , 1996.

[10] SANTOS, Luiz C. V. dos “Exploiting instruction-
level parallelism: a construtive approach”,
Eindhoven University of Technology, PhD.
Thesis, Eindhoven, 1998.

