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ABSTRACT 

 
This paper presents an approach for register allocation and scheduling which relies on three main ideas: global 
optimization, solution space exploration and on-the-fly generation of a symbolic state machine. To allow global 
optimizations while preserving semantics, the traditional notion of control dependence is replaced by the notion of 
predicate. In our approach, predicates are used not only as attributes of operations during scheduling (predicated 
execution), but also as attributes of values during register allocation. Experimental results show that this global approach 
improves the chances of reaching high-quality solutions in High-Level Synthesis. 
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RESUMO 
 
Este artigo apresenta uma abordagem para o escalonamento e a alocação de registradores fundamentada em três idéias 
principais: otimização global, exploração do espaço de soluções e geração simultânea da maquina de estados finitos. Para 
permitir otimizações globais preservando a semântica, a tradicional noção de dependência de controle é substituída pela 
noção de predicado. Em nossa abordagem, predicados são usados não apenas como atributos de operações durante o 
escalonamento (“predicated execution”), mas também como atributos dos valores durante a alocação de registradores. Os 
resultados experimentais mostram que esta abordagem global aumenta a possibilidade de alcançar soluções de alta 
qualidade em Síntese de Alto Nível.  
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ABSTRACT 

 
This paper presents an approach for register allocation and 
scheduling which relies on three main ideas: global 
optimization, solution space exploration and on-the-fly 
generation of a symbolic state machine. To allow global 
optimizations while preserving semantics, the traditional 
notion of control dependence is replaced by the notion of 
predicate. In our approach, predicates are used not only as 
attributes of operations during scheduling (predicated 
execution), but also as attributes of values during register 
allocation. Experimental results show that this global 
approach improves the chances of reaching high-quality 
solutions in High-Level Synthesis. 
 
 

1. INTRODUCTION 
 

High-Level Synthesis (HLS) tools generate the structure 
of an application-specific integrated circuit (ASIC) from 
the description of its behavior [3] [4]. The design of 
ASICs under tight time and resource constraints is 
challenging. Tight constraints ask for tools with growing 
optimization capabilities and demand design space 
exploration.  

To face this challenge, we propose an approach which 
combines global optimization techniques and exploration 
of alternative solutions. When addressing scheduling and 
register allocation, optimizations are performed beyond 
basic blocks boundaries. 

To allow such global optimizations while preserving 
semantics, the traditional notion of control dependence is 
replaced in our approach by the notion of predicate. The 
idea of using predicates as attributes of operations is well-
known in the Computer Architecture domain [5], where 
predication is supported in hardware. Predicates have also 
been used in High-Level Synthesis [9][10] as a way of 
modeling conditional execution. In our approach, 
predicates are used not only as attributes of operations, 

thereby modeling conditional and speculative execution, 
but also as attributes of produced and consumed values so 
as to allow global register allocation. 

The main distinguishing features of our  approach are 
the following: 

• Our modeling of conditional execution does not rely 
on the notion of control dependence, which limits 
the exploitation of parallelism, but on the notion of 
predicate. 

• Our approach is based on exploration of alternative 
solutions, instead of applying a package of heuristic 
criteria to generate a single solution. 

• Our scheduler associates operations directly with 
states, thereby building a state machine on-the-fly. 
As a result, not only the schedule latency, but also 
the number of states can be assessed as a way of 
evaluating the quality of a solution.  

• A global modeling is proposed for register 
allocation under conditional execution. The notion 
of life interval [4], which assumes a linear sequence 
of scheduled operations, is replaced by the notion of 
a path in the state machine graph on which a 
produced value has to be preserved until its final 
consumption. This notion can be described by 
means of predicates attributed to the production and 
consumption of values. 

This paper is organized as follows. Section 2 
summarizes our modeling of design representation with 
respect to constraints and conditional execution. Our high-
level synthesis approach is sketched in Section 3. Section 
4 focuses on our techniques for global scheduling and 
register allocation. Section 5 addresses implementation 
and experimental results. Finally, our conclusions and 
perspectives are discussed in Section 6. 
 

2. OUR MODELING 
 

The main notions used throughout this paper are 
formalized in this section.  



Definition 1 - A data flow graph DFG(V,E) is a directed 
graph where each vertex vi ∈ V represents an operation 
and each edge (vi, vj) ∈ E represents a data dependence 
between vi and vj.  
Definition 2 - A state machine graph SMG(S,T) is a 
directed graph where each vertex si ∈ S represents a state 
and each edge (ti, tj) ∈ T represents a transition between 
states si and sj.  
Definition 3 - A resource constraint vector a is a vector 
where each component at represents the number of 
available resources of a given type t.  
Definition 4 - The execution delay di is the number of 
cycles needed to complete the execution of operation vi. 
Definition 5 – The latency λ of a given SMG is the 
number of states in the longest path from the source to the 
sink vertex. 
Definition 6 - Given the states sp, sk ∈ S, the distance 
between them, written  δ(sp, sk), number of edges in the 
path from sp  to sk. 
Definition 7 - Given an arbitrary state sk ∈ S, the set of 
available operations in sk, written Ak, is the set of all 
operations vj, such that: 

• Operation vj was not scheduled in sk neither in any 
state sm reaching sk. 

• For each immediate predecessor vi of vj scheduled 
in some arbitrary state sp, the inequality δ(sp, sk) ≥ 
dj holds. 

Definition 9 – Given an arbitrary state sk ∈ S, the set of 
unfinished operations in sk, written Uk, is the set of all 
operations vj, such that: 

• Operation vj was already scheduled in some 
arbitrary state sm reaching sk. 

• The inequality δ(sm, sk) < dj holds.  
Definition 10 – Given two arbitrary states si and sj ∈ S, si 

and sj are equivalent, written si ≡ sj, if and only if Ai = Aj 
and Ui = Uj. 
Definition 11 – Let si e sj ∈ S be two arbitrary states. 
Given a value v produced in state si and consumed for the 
last time in state sj, the life interval of value v, written Iv, 
is the interval starting in the clock cycle associated with 
state si and finishing in the cycle associated with sj. 
Definition 12 - The chromatic number χ is the minimum 
number of colors in the solution of a vertex coloring 
problem [4].  
Definition 13 - A test Ti is an operation whose result is a 
Boolean value. Each test is associated with a Boolean 
variable ci, called a guard.  
Definition 14 - The predicate G(ψ) is a Boolean function 
defined on the set of guards {c1, c2, ..., cn}, where ψ can be 
an operation vi, an edge (vi, vj) or a state si as detailed 
below. 

Let us clarify how conditional execution is modeled 
with an example. Figure 1a shows a behavioral description 
containing two nested conditional constructs, defined by 
tests T1 and T2. Figure 1b shows the corresponding DFG, 

as well as the predicates of each operation. Note that, 
since operations A, B, T1 and H are executed 
inconditionally, to their predicates is assigned the Boolean 
constant 1. Note also that the operations which execute 
only when the result of test T1 is true include the guard c1 
in their predicates. On the contrary, since operation G only 
executes when the outcome of T1 is false, the complement 
of the guard, written , is included in its predicate. 
Finally, notice that operation E, which belongs to the inner 
conditional construct, executes when T1 is true and T2 is 
false. Therefore, its predicate is . To the predicates 
edges are attributed the corresponding predicates from its 
operation source, used to identify the end of the 
conditional test.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The modeling of conditional execution with 
predicates 

 
3. RELATED WORK 

 
Several methods have addressed behavioral descriptions 
containing conditional construct in High-Level Synthesis. 
For instance, Tree Scheduling [6] uses a tree structure to 
represent different control paths and allow the motion of 
operations. Path-based Scheduling [2] [3] produces a 
schedule for each control path independently and then 
unifies them into a single schedule. In the hierarchical 
approach described in [8], a DFG with conditional 
construct is transformed into an "equivalent" DFG without 
conditional constructs which is scheduled by a 
conventional basic-block scheduler. A condition vector is 

(A) a = a1 + a2; 
(B) b = b1 - b2; 
(T1) if (p<>q){ 
(T2)  if (q>p){ 
(C)   c = a + x1; 
(D)   r = c - x2; 
  } else { 
(E)   r = a + b; 
  } 
(F)  t = r - x1; 
 } else { 
(G)  t = b - x2; 
 } 
(H) out = t + x2; 
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Operations: 
G(A)=G(B)=G(T1)=G(H)=1 
G(T2)=G(F)=c1 

G(G)=  
G(C)=G(D)=c1 ⋅ c2 
G(E)=  

Edges: 
G(A C) = 1 
G(A E) = 1 
G(B E) = 1 
G(B G) = 1 

G(C D) = c1 ⋅ c2 
G(D F) = c1 ⋅ c2 
G(E F) =  

G(F H) = c1 
G(G H) =  



proposed in [13] to model mutually exclusive operations 
and to support speculative execution. A condition vector is 
essentially a way of representing a predicate. Other 
approaches [9] [10] have generalized this notion later. 

 
4. AN OVERVIEW OF THE APPROACH 

 
To increase the chances of finding a good solution under 
tight constraints, it is mandatory not to restrict the search 
space to a single solution. A better approach would be to 
systematically generate several solutions, then evaluate 
their costs and finally select the best solution. We adopt 
the second approach, which is cast as the interaction of 
two main engines [10], an explorer and a constructor, as 
depicted in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: An overview of the approach 
 

The task of the explorer is to create priority encodings 
for the operations to be scheduled and send them, one at a 
time, to the constructor. The constructor builds a solution 
for each priority encoding ∏ and return its cost to the 
explorer. The explorer receives the cost of a given 
solution, compares it with the costs of previous solutions 
and decides whether the new solution is satisfactory or 
not. 

Different metrics can be used to define the cost of a 
solution. For instance, in this paper we use the latency λ 
(see Definition 5) as the cost for scheduling and the 
chromatic number χ (see Definition 12), as the cost for 
register allocation. 

The constructor consists of a parallelizer and a 
scheduler. Given a new state sk in the SMG, the main task 
of the parallelizer is to find the set of operations available 
for scheduling within the limited amount of resources in 
that state. The evaluation of the set Ak of available 
operations (see Definition 7) is the key to global 
scheduling. Since we have replaced control dependencies 
with predicates to model conditional execution, several 
precedence constraints are actually removed, uncovering 
more parallelism. As a consequence, the set Ak may 
contain operations coming from different basic blocks. 

The task of the scheduler is simply to select as many 
operations from Ak as the number of available resources. 
If two operations map to a same resource, the priority 
encoding ∏ will break ties. Given a state sk,  the scheduler 

returns the set of operations scheduled in that state, written 
OPk. 
 

5. PREDICATION IN SCHEDULING AND 
REGISTER ALLOCATION 

 
We have adopted the same structure of the scheduling 
algorithm proposed in [1] and adapted in [10] to fit the 
approach sketched in Section 2. However, the original 
algorithm assumes a control-flow graph (CFG) where 
control dependencies are represented. The original 
algorithm uses CFG-based data flow analysis to find 
available operations in each state. In our approach, since 
we rely on a DFG where only data dependencies are 
represented, conditional execution is captured by 
predicates. As a consequence, the evaluation of available 
operations involves checking both the DFG and operation 
predicates. 

The behavior of our parallelizer is summarized in 
Algorithm 1.The procedure Paralellizer(a, ∏) creates a 
current state sk and schedule in it as many operations as 
can be accommodated into the available resources.  

After all possible operations are scheduled in sk, the 
procedure creates a next state sk+1, which will become the 
current state in the next loop iteration. Therefore, 
operations are scheduled into successive states until all 
operations are scheduled. States to be scheduled are 
maintained in the list Next. The algorithm terminates 
when such list is empty. 

It is important to notice that when a conditional test Tn 
is scheduled in state sk, two next states are created: sk+1 
(corresponding to guard cn) and sk+2 (corresponding to 
guard ). Note that the operations from Ak selected to 
become available at states sk+1 and sk+2 are subjected to 
complementary guards, i.e., conditional execution is taken 
into account. 
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Parallelizer (a, ∏){ 
 create initial state s0 in the SMG; 
 A0 = { vi |vo is the only predecessor of vi in the DFG}; 

 insert s0 in the list Next; 
 while (Next ≠ ∅) do{ 
  sk = first element of the list Next; 
  sj = FindEquivalentState(sk);     
  if (sj ≠ none) { 
   for each predecessor sn of sk { 
    remove transition (sn, sk) ∈ T; 
    insert edge (sn, sj) in T; 
   } 
  } 
  else{ 
   OPk = ScheduleState(sk, Ak, Uk, a, ∏);   
   P = FindUnfinishedOperations(OPk);    
   D = FindAvailableOperations(OPk);   
   D = D ∪ Ak; 
   if (∃ conditional test Tn ∈ OPk whose guard is cn) { 
    create two new states sk+1 and sk+2 in the SMG; 

Ak+1 = SelectAvailableUnderGuard(Ak, cn); 
Ak+2 = SelectAvailableUnderGuard(Ak, ); 
Uk+1 = Uk+2 = P; 
insert sk+1  and sk+2  in the list Next; 

   } 
   else{ 
    create one new state sk+1 in the SMG; 
    Ak+1= D; 
    Uk+1 = P; 

    insert sk+1 in the list Next; 
   } 
  } 
 }   
} 

Algorithm 1: Scheduling Algorithm 
 
An example of scheduling is illustrated in Figure 3a. It 

shows a SMG obtained from the DFG in Figure 1a, 
assuming one resource of each type (adder, subtractor, 
comparator). Note, for instance, that operations D and E 
are both executed in cycle 3. However, their predicates tell 
us that their execution is mutually exclusive 
(G(D)•G(E)=0). In other words, they are scheduled on 
different SMG paths. Notice also that operation C 
executes speculatively, since it executes before the result 
of test T1 is known. In a classical representation, C would 
be control dependent upon T1, limiting speculative 
execution. This precedence constraint is removed in our 
modeling, uncovering more parallelism. The extra 
parallelism can be accommodated into idle resources,  
which is likely to reduce latency.  

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) SMG (λ=5 and |S|=7)             
 
 
 
 
 
 
 
 
 
 
 
 

     (b) Life paths (c) Conflict Graph (χ=3) 

Figure 3: An example on how predication is used 
 
Register allocation would be trivial if a different 

register were allocated to each distinct value. However,  
the same register can be shared by values whose life 
intervals (see Definition 11) do not overlap [4]. This 
sharing policy assumes that values are produced by 
operations scheduled in a linear-time sequence. In other 
words, it implicitly assumes basic block scheduling. When 
conditional constructs are present in the behavioral 
description, scheduling actually produces a symbolic 
finite-state machine, represented by our SMG. If we 
preserve the notion of interval under conditional 
execution, either we preclude global register  optimization 
or we overestimate the number of registers. Besides, under 
conditional execution it may happen that a same operation 
be scheduled in states belonging to different SMG paths. 
For those reasons, a generalization of the notion of life 
interval is needed, as formalized below: 

 
Definition 15 – Let si e sj ∈ S  be two arbitrary states of 
the SMG. Given a value v produced in state si and 
consumed for the last time in state sj, the life path of v, 
written Pv, is the path starting at si and finishing at the 
immediate predecessor of sj. 
 

Begin End
P1(A C) S0 S1 
P2(A E) S0 S4 
P3(B E) S0 S4 
P4(B G) S0 S2 
P5(C D) S1 S3 
P6(D F) S3 S5 
P7(E F) S4 S5 
P8(F H) S5 S6 
P9(G H) S2 S6 

P5 

P6

P8

P7

P4 

P1 

P2

P3 

P9 

c1 ⋅ c2

S0{T1,A,B} 

S6{H} 

S2{G} S1{T2, C} 

S3{D} S4{E} 

S5{F}

Cycle 2

Cycle 1 

Cycle 4 

Cycle 5 

Cycle 3 

1 

1 

c1

c1



Figure 3b shows the life paths for all the values 
produced in the behavioral description in Figure 1a, whose 
SMG is shown in Figure 3a.  

Since intervals are generalized into paths, intercepting 
intervals are generalized as intercepting paths. This is 
formalized in Algorithm 2. Given two values u and v, the 
procedure ExistConflict(u,v) detects whether or not their 
storage would be conflicting by checking if Pu intercepts 
Pv. 

 
 
 
 
 
 

Algorithm 2: Procedure for conflict detection between 
values. 

 
Figure 3c shows a conflict graph where each vertex 

represents a life path. When building such a graph, 
Algorithm 2 decides whether or not there must be an edge 
between a pair of vertices. Notice that although there are 
nine life paths, only three registers are required to store 
their respective values (χ =3), as indicated by the vertex 
coloring shown in Figure 3c.  
 

6. IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

 
A prototype of our approach is implemented in C++ under 
the Linux operating system. Predicates are implemented 
using binary decision diagrams. We have used the CUDD 
package [11] to support predicate manipulation. Due to 
the frequent update of available and pending operations 
they are efficiently kept in binary heaps.  

In our experiments, we have used three classical 
examples from the HLS literature. They are referred to as 
Wakabayashi [13], Kim [8] and rotor [9]. For each 
example, 1000 alternative solutions were generated and 
examined. For these examples, the best solution was 
always reached within the first 100 solutions. Experiments 
were performed under the same assumptions made in [9] 
and [10]. 
 
6.1. Scheduling Results 
 
Tables 1, 2 report the latency λ obtained by other methods 
as compared to ours. The first columns show the resource 
constraints. Since our method generates the state machine 
on-the-fly, we are also able to report the number of states 
(|S|). The methods in [7] and [12] rely on heuristics to 
generate a single solution. The results of an exact method 
are reported in [9]. Although exact, this method 
guarantees the optimal solution only for a restricted 
speculative execution model [10]. Note that our approach 

reaches the best known latencies for all tested resource 
constraints. 
 

Table 1: Latency for the example Kim. 
Our 

approach 
 

ADD
 

SUB 
 

COM
λ |S| 

λ in [9] 
Optimal 
 Solution 

 
λ in 
[7] 

 
λ in 
[12]

2 1 1 6 14 6 7 6 
 

Table 2: Latency for the example Rotor. 
Our approach  

ALU 
 

MUL 
 

TAB 
 

COM λ |S| 
λ in [9] 
Optimal 
Solution 

2 0 1 - 7 16 7 
3 0 1 - 7 13 7 
4 0 1 - 6 13 6 
2 2 1 - 8 16 8 
3 2 1 - 8 14 8 
4 2 1 - 8 13 8 

 
6.2. Results for Register Allocation 
 
Tables 3 and 4 show our results for the solution with best 
latency. These results are compared with those obtained 
by other methods. It was difficult to find methods which 
address the problem under exactly the same conditions. 
This difficulty precludes the direct comparisons with other 
methods. In spite of that, we present the values we found 
as a reference. Typical numbers of registers obtained by 
conventional allocation are reported in [14], but their 
respective latency is not informed. In [15] a different 
problem is tackled, where the goal is to find a scheduling 
for a fixed number of registers and, again, latencies are not 
informed. Observe that for the example Wakabayashi, we 
have obtained the best reported values. For the example 
Kim, we have obtained a worse value than in [14]. 
However, since the respective latency is not reported, the 
better result found in [14] is likely to belong to a solution 
with larger latency than ours, which would explain the 
smaller number of registers. In [9], which describes a 
method also based on predicates, register allocation is 
unfortunately not addressed for examples rotor and s2r. 
 

Table 3: Number of registers for the example 
Wakabayashi. 

Our 
approach

χ in [14] 
Typical 

allocation 

χ in [14] χ in [15]  
AD
D 

 
SU
B 

 
COM

λ χ λ χ λ χ λ χ 
2 1 1 7 4 - 5 - 4 - 4 

 
Table 4: Number of registers for the example Kim. 

Our 
approach

χ in [14] 
Typical 

allocation 

χ in [14] χ in [15]  
ADD

 
SUB

 
COM

λ χ λ χ λ χ λ χ 
3 2 1 5 7 - - - - - 4 
3 3 1 5 7 - 8 - 4 - - 

ExistConflict (u, v){ 
 if (Pu ∩ Pv ≠ ∅)     
  return(TRUE);  
 else  
  return(FALSE); 
} 



7. CONCLUSIONS AND PERSPECTIVES  
 

This paper has presented a way of using predication to 
allow global scheduling and global register allocation. 
Experimental results for scheduling show that our 
modeling can reach the best known latencies for all the 
tested examples. Few results were published about register 
allocation under conditional execution. In spite of the 
ensuing difficulty to making direct comparisons, our 
experimental results seem promising. In any case, in the 
face of the scarcity of published results about global 
allocation in HLS, our results are already a contribution. 
Such scarcity is perhaps an evidence that this topic 
deserves further investigation and more experiments 
should be performed and reported. 
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