
TOWARDS GLOBAL SCHEDULING AND REGISTER ALLOCATION
USING PREDICATED EXECUTION

Rogério Xavier de Azambuja Felipe Vieira Klein Flávio Meurer Luiz C. V. dos Santos

UFSC1 – ULBRA Santa Maria2 UFSC1 UFSC1 UFSC1

1UFSC – Universidade Federal de Santa Catarina
INE/CTC/LAPS – P.O. Box 476 – 88010-970 – Florianópolis/SC, Brazil

{xavier, fvklein, flavio, santos}@inf.ufsc.br

2ULBRA Santa Maria – Universidade Luterana do Brasil
P.O. Box 21834 – 97020-001 – Santa Maria /RS – Brazil

ABSTRACT

This paper presents an approach for register allocation and scheduling which relies on three main ideas: global
optimization, solution space exploration and on-the-fly generation of a symbolic state machine. To allow global
optimizations while preserving semantics, the traditional notion of control dependence is replaced by the notion of
predicate. In our approach, predicates are used not only as attributes of operations during scheduling (predicated
execution), but also as attributes of values during register allocation. Experimental results show that this global approach
improves the chances of reaching high-quality solutions in High-Level Synthesis.

KEYWORDS

High-Level Synthesis, Scheduling, Register Allocation, Conditional Execution.

RESUMO

Este artigo apresenta uma abordagem para o escalonamento e a alocação de registradores fundamentada em três idéias
principais: otimização global, exploração do espaço de soluções e geração simultânea da maquina de estados finitos. Para
permitir otimizações globais preservando a semântica, a tradicional noção de dependência de controle é substituída pela
noção de predicado. Em nossa abordagem, predicados são usados não apenas como atributos de operações durante o
escalonamento (“predicated execution”), mas também como atributos dos valores durante a alocação de registradores. Os
resultados experimentais mostram que esta abordagem global aumenta a possibilidade de alcançar soluções de alta
qualidade em Síntese de Alto Nível.

PALAVRAS-CHAVE

Síntese de Alto Nível, Escalonamento, Alocação de registradores, Execução condicional.

TOWARDS GLOBAL SCHEDULING AND REGISTER ALLOCATION
USING PREDICATED EXECUTION

Rogério Xavier de Azambuja Felipe Vieira Klein Flávio Meurer Luiz C. V. dos Santos

UFSC1 – ULBRA Santa Maria2 UFSC1 UFSC1 UFSC1

1UFSC – Universidade Federal de Santa Catarina
INE/CTC/LAPS – P.O. Box 476 – 88010-970 – Florianópolis/SC, Brazil

{xavier, fvklein, flavio, santos}@inf.ufsc.br

2ULBRA Santa Maria – Universidade Luterana do Brasil
P.O. Box 21834 – 97020-001 – Santa Maria /RS – Brazil

ABSTRACT

This paper presents an approach for register allocation and
scheduling which relies on three main ideas: global
optimization, solution space exploration and on-the-fly
generation of a symbolic state machine. To allow global
optimizations while preserving semantics, the traditional
notion of control dependence is replaced by the notion of
predicate. In our approach, predicates are used not only as
attributes of operations during scheduling (predicated
execution), but also as attributes of values during register
allocation. Experimental results show that this global
approach improves the chances of reaching high-quality
solutions in High-Level Synthesis.

1. INTRODUCTION

High-Level Synthesis (HLS) tools generate the structure
of an application-specific integrated circuit (ASIC) from
the description of its behavior [3] [4]. The design of
ASICs under tight time and resource constraints is
challenging. Tight constraints ask for tools with growing
optimization capabilities and demand design space
exploration.

To face this challenge, we propose an approach which
combines global optimization techniques and exploration
of alternative solutions. When addressing scheduling and
register allocation, optimizations are performed beyond
basic blocks boundaries.

To allow such global optimizations while preserving
semantics, the traditional notion of control dependence is
replaced in our approach by the notion of predicate. The
idea of using predicates as attributes of operations is well-
known in the Computer Architecture domain [5], where
predication is supported in hardware. Predicates have also
been used in High-Level Synthesis [9][10] as a way of
modeling conditional execution. In our approach,
predicates are used not only as attributes of operations,

thereby modeling conditional and speculative execution,
but also as attributes of produced and consumed values so
as to allow global register allocation.

The main distinguishing features of our approach are
the following:

• Our modeling of conditional execution does not rely
on the notion of control dependence, which limits
the exploitation of parallelism, but on the notion of
predicate.

• Our approach is based on exploration of alternative
solutions, instead of applying a package of heuristic
criteria to generate a single solution.

• Our scheduler associates operations directly with
states, thereby building a state machine on-the-fly.
As a result, not only the schedule latency, but also
the number of states can be assessed as a way of
evaluating the quality of a solution.

• A global modeling is proposed for register
allocation under conditional execution. The notion
of life interval [4], which assumes a linear sequence
of scheduled operations, is replaced by the notion of
a path in the state machine graph on which a
produced value has to be preserved until its final
consumption. This notion can be described by
means of predicates attributed to the production and
consumption of values.

This paper is organized as follows. Section 2
summarizes our modeling of design representation with
respect to constraints and conditional execution. Our high-
level synthesis approach is sketched in Section 3. Section
4 focuses on our techniques for global scheduling and
register allocation. Section 5 addresses implementation
and experimental results. Finally, our conclusions and
perspectives are discussed in Section 6.

2. OUR MODELING

The main notions used throughout this paper are
formalized in this section.

Definition 1 - A data flow graph DFG(V,E) is a directed
graph where each vertex vi ∈ V represents an operation
and each edge (vi, vj) ∈ E represents a data dependence
between vi and vj.
Definition 2 - A state machine graph SMG(S,T) is a
directed graph where each vertex si ∈ S represents a state
and each edge (ti, tj) ∈ T represents a transition between
states si and sj.
Definition 3 - A resource constraint vector a is a vector
where each component at represents the number of
available resources of a given type t.
Definition 4 - The execution delay di is the number of
cycles needed to complete the execution of operation vi.
Definition 5 – The latency λ of a given SMG is the
number of states in the longest path from the source to the
sink vertex.
Definition 6 - Given the states sp, sk ∈ S, the distance
between them, written δ(sp, sk), number of edges in the
path from sp to sk.
Definition 7 - Given an arbitrary state sk ∈ S, the set of
available operations in sk, written Ak, is the set of all
operations vj, such that:

• Operation vj was not scheduled in sk neither in any
state sm reaching sk.

• For each immediate predecessor vi of vj scheduled
in some arbitrary state sp, the inequality δ(sp, sk) ≥
dj holds.

Definition 9 – Given an arbitrary state sk ∈ S, the set of
unfinished operations in sk, written Uk, is the set of all
operations vj, such that:

• Operation vj was already scheduled in some
arbitrary state sm reaching sk.

• The inequality δ(sm, sk) < dj holds.
Definition 10 – Given two arbitrary states si and sj ∈ S, si

and sj are equivalent, written si ≡ sj, if and only if Ai = Aj
and Ui = Uj.
Definition 11 – Let si e sj ∈ S be two arbitrary states.
Given a value v produced in state si and consumed for the
last time in state sj, the life interval of value v, written Iv,
is the interval starting in the clock cycle associated with
state si and finishing in the cycle associated with sj.
Definition 12 - The chromatic number χ is the minimum
number of colors in the solution of a vertex coloring
problem [4].
Definition 13 - A test Ti is an operation whose result is a
Boolean value. Each test is associated with a Boolean
variable ci, called a guard.
Definition 14 - The predicate G(ψ) is a Boolean function
defined on the set of guards {c1, c2, ..., cn}, where ψ can be
an operation vi, an edge (vi, vj) or a state si as detailed
below.

Let us clarify how conditional execution is modeled
with an example. Figure 1a shows a behavioral description
containing two nested conditional constructs, defined by
tests T1 and T2. Figure 1b shows the corresponding DFG,

as well as the predicates of each operation. Note that,
since operations A, B, T1 and H are executed
inconditionally, to their predicates is assigned the Boolean
constant 1. Note also that the operations which execute
only when the result of test T1 is true include the guard c1
in their predicates. On the contrary, since operation G only
executes when the outcome of T1 is false, the complement
of the guard, written , is included in its predicate.
Finally, notice that operation E, which belongs to the inner
conditional construct, executes when T1 is true and T2 is
false. Therefore, its predicate is . To the predicates
edges are attributed the corresponding predicates from its
operation source, used to identify the end of the
conditional test.

Figure 1: The modeling of conditional execution with
predicates

3. RELATED WORK

Several methods have addressed behavioral descriptions
containing conditional construct in High-Level Synthesis.
For instance, Tree Scheduling [6] uses a tree structure to
represent different control paths and allow the motion of
operations. Path-based Scheduling [2] [3] produces a
schedule for each control path independently and then
unifies them into a single schedule. In the hierarchical
approach described in [8], a DFG with conditional
construct is transformed into an "equivalent" DFG without
conditional constructs which is scheduled by a
conventional basic-block scheduler. A condition vector is

(A) a = a1 + a2;
(B) b = b1 - b2;
(T1) if (p<>q){
(T2) if (q>p){
(C) c = a + x1;
(D) r = c - x2;
 } else {
(E) r = a + b;
 }
(F) t = r - x1;
 } else {
(G) t = b - x2;
 }
(H) out = t + x2;
 Sink

Source

+
C

-
D

+ A

+
E

-
F

-
G

+ H

- B # T1
#

T2

 (a) (b)

Operations:
G(A)=G(B)=G(T1)=G(H)=1
G(T2)=G(F)=c1

G(G)=
G(C)=G(D)=c1 ⋅ c2
G(E)=

Edges:
G(A C) = 1
G(A E) = 1
G(B E) = 1
G(B G) = 1

G(C D) = c1 ⋅ c2
G(D F) = c1 ⋅ c2
G(E F) =

G(F H) = c1
G(G H) =

proposed in [13] to model mutually exclusive operations
and to support speculative execution. A condition vector is
essentially a way of representing a predicate. Other
approaches [9] [10] have generalized this notion later.

4. AN OVERVIEW OF THE APPROACH

To increase the chances of finding a good solution under
tight constraints, it is mandatory not to restrict the search
space to a single solution. A better approach would be to
systematically generate several solutions, then evaluate
their costs and finally select the best solution. We adopt
the second approach, which is cast as the interaction of
two main engines [10], an explorer and a constructor, as
depicted in Figure 2.

Figure 2: An overview of the approach

The task of the explorer is to create priority encodings
for the operations to be scheduled and send them, one at a
time, to the constructor. The constructor builds a solution
for each priority encoding ∏ and return its cost to the
explorer. The explorer receives the cost of a given
solution, compares it with the costs of previous solutions
and decides whether the new solution is satisfactory or
not.

Different metrics can be used to define the cost of a
solution. For instance, in this paper we use the latency λ
(see Definition 5) as the cost for scheduling and the
chromatic number χ (see Definition 12), as the cost for
register allocation.

The constructor consists of a parallelizer and a
scheduler. Given a new state sk in the SMG, the main task
of the parallelizer is to find the set of operations available
for scheduling within the limited amount of resources in
that state. The evaluation of the set Ak of available
operations (see Definition 7) is the key to global
scheduling. Since we have replaced control dependencies
with predicates to model conditional execution, several
precedence constraints are actually removed, uncovering
more parallelism. As a consequence, the set Ak may
contain operations coming from different basic blocks.

The task of the scheduler is simply to select as many
operations from Ak as the number of available resources.
If two operations map to a same resource, the priority
encoding ∏ will break ties. Given a state sk, the scheduler

returns the set of operations scheduled in that state, written
OPk.

5. PREDICATION IN SCHEDULING AND
REGISTER ALLOCATION

We have adopted the same structure of the scheduling
algorithm proposed in [1] and adapted in [10] to fit the
approach sketched in Section 2. However, the original
algorithm assumes a control-flow graph (CFG) where
control dependencies are represented. The original
algorithm uses CFG-based data flow analysis to find
available operations in each state. In our approach, since
we rely on a DFG where only data dependencies are
represented, conditional execution is captured by
predicates. As a consequence, the evaluation of available
operations involves checking both the DFG and operation
predicates.

The behavior of our parallelizer is summarized in
Algorithm 1.The procedure Paralellizer(a, ∏) creates a
current state sk and schedule in it as many operations as
can be accommodated into the available resources.

After all possible operations are scheduled in sk, the
procedure creates a next state sk+1, which will become the
current state in the next loop iteration. Therefore,
operations are scheduled into successive states until all
operations are scheduled. States to be scheduled are
maintained in the list Next. The algorithm terminates
when such list is empty.

It is important to notice that when a conditional test Tn
is scheduled in state sk, two next states are created: sk+1
(corresponding to guard cn) and sk+2 (corresponding to
guard). Note that the operations from Ak selected to
become available at states sk+1 and sk+2 are subjected to
complementary guards, i.e., conditional execution is taken
into account.

Constructor

∏ Cost

Parallelizer

A OP

Scheduler

Explorer

Parallelizer (a, ∏){
 create initial state s0 in the SMG;
 A0 = { vi |vo is the only predecessor of vi in the DFG};

 insert s0 in the list Next;
 while (Next ≠ ∅) do{
 sk = first element of the list Next;
 sj = FindEquivalentState(sk);
 if (sj ≠ none) {
 for each predecessor sn of sk {
 remove transition (sn, sk) ∈ T;
 insert edge (sn, sj) in T;
 }
 }
 else{
 OPk = ScheduleState(sk, Ak, Uk, a, ∏);
 P = FindUnfinishedOperations(OPk);
 D = FindAvailableOperations(OPk);
 D = D ∪ Ak;
 if (∃ conditional test Tn ∈ OPk whose guard is cn) {
 create two new states sk+1 and sk+2 in the SMG;

Ak+1 = SelectAvailableUnderGuard(Ak, cn);
Ak+2 = SelectAvailableUnderGuard(Ak,);
Uk+1 = Uk+2 = P;
insert sk+1 and sk+2 in the list Next;

 }
 else{
 create one new state sk+1 in the SMG;
 Ak+1= D;
 Uk+1 = P;

 insert sk+1 in the list Next;
 }
 }
 }
}

Algorithm 1: Scheduling Algorithm

An example of scheduling is illustrated in Figure 3a. It

shows a SMG obtained from the DFG in Figure 1a,
assuming one resource of each type (adder, subtractor,
comparator). Note, for instance, that operations D and E
are both executed in cycle 3. However, their predicates tell
us that their execution is mutually exclusive
(G(D)•G(E)=0). In other words, they are scheduled on
different SMG paths. Notice also that operation C
executes speculatively, since it executes before the result
of test T1 is known. In a classical representation, C would
be control dependent upon T1, limiting speculative
execution. This precedence constraint is removed in our
modeling, uncovering more parallelism. The extra
parallelism can be accommodated into idle resources,
which is likely to reduce latency.

(a) SMG (λ=5 and |S|=7)

 (b) Life paths (c) Conflict Graph (χ=3)

Figure 3: An example on how predication is used

Register allocation would be trivial if a different

register were allocated to each distinct value. However,
the same register can be shared by values whose life
intervals (see Definition 11) do not overlap [4]. This
sharing policy assumes that values are produced by
operations scheduled in a linear-time sequence. In other
words, it implicitly assumes basic block scheduling. When
conditional constructs are present in the behavioral
description, scheduling actually produces a symbolic
finite-state machine, represented by our SMG. If we
preserve the notion of interval under conditional
execution, either we preclude global register optimization
or we overestimate the number of registers. Besides, under
conditional execution it may happen that a same operation
be scheduled in states belonging to different SMG paths.
For those reasons, a generalization of the notion of life
interval is needed, as formalized below:

Definition 15 – Let si e sj ∈ S be two arbitrary states of
the SMG. Given a value v produced in state si and
consumed for the last time in state sj, the life path of v,
written Pv, is the path starting at si and finishing at the
immediate predecessor of sj.

Begin End
P1(A C) S0 S1
P2(A E) S0 S4
P3(B E) S0 S4
P4(B G) S0 S2
P5(C D) S1 S3
P6(D F) S3 S5
P7(E F) S4 S5
P8(F H) S5 S6
P9(G H) S2 S6

P5

P6

P8

P7

P4

P1

P2

P3

P9

c1 ⋅ c2

S0{T1,A,B}

S6{H}

S2{G} S1{T2, C}

S3{D} S4{E}

S5{F}

Cycle 2

Cycle 1

Cycle 4

Cycle 5

Cycle 3

1

1

c1

c1

Figure 3b shows the life paths for all the values
produced in the behavioral description in Figure 1a, whose
SMG is shown in Figure 3a.

Since intervals are generalized into paths, intercepting
intervals are generalized as intercepting paths. This is
formalized in Algorithm 2. Given two values u and v, the
procedure ExistConflict(u,v) detects whether or not their
storage would be conflicting by checking if Pu intercepts
Pv.

Algorithm 2: Procedure for conflict detection between
values.

Figure 3c shows a conflict graph where each vertex

represents a life path. When building such a graph,
Algorithm 2 decides whether or not there must be an edge
between a pair of vertices. Notice that although there are
nine life paths, only three registers are required to store
their respective values (χ =3), as indicated by the vertex
coloring shown in Figure 3c.

6. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

A prototype of our approach is implemented in C++ under
the Linux operating system. Predicates are implemented
using binary decision diagrams. We have used the CUDD
package [11] to support predicate manipulation. Due to
the frequent update of available and pending operations
they are efficiently kept in binary heaps.

In our experiments, we have used three classical
examples from the HLS literature. They are referred to as
Wakabayashi [13], Kim [8] and rotor [9]. For each
example, 1000 alternative solutions were generated and
examined. For these examples, the best solution was
always reached within the first 100 solutions. Experiments
were performed under the same assumptions made in [9]
and [10].

6.1. Scheduling Results

Tables 1, 2 report the latency λ obtained by other methods
as compared to ours. The first columns show the resource
constraints. Since our method generates the state machine
on-the-fly, we are also able to report the number of states
(|S|). The methods in [7] and [12] rely on heuristics to
generate a single solution. The results of an exact method
are reported in [9]. Although exact, this method
guarantees the optimal solution only for a restricted
speculative execution model [10]. Note that our approach

reaches the best known latencies for all tested resource
constraints.

Table 1: Latency for the example Kim.
Our

approach

ADD

SUB

COM
λ |S|

λ in [9]
Optimal
 Solution

λ in
[7]

λ in
[12]

2 1 1 6 14 6 7 6

Table 2: Latency for the example Rotor.
Our approach

ALU

MUL

TAB

COM λ |S|
λ in [9]
Optimal
Solution

2 0 1 - 7 16 7
3 0 1 - 7 13 7
4 0 1 - 6 13 6
2 2 1 - 8 16 8
3 2 1 - 8 14 8
4 2 1 - 8 13 8

6.2. Results for Register Allocation

Tables 3 and 4 show our results for the solution with best
latency. These results are compared with those obtained
by other methods. It was difficult to find methods which
address the problem under exactly the same conditions.
This difficulty precludes the direct comparisons with other
methods. In spite of that, we present the values we found
as a reference. Typical numbers of registers obtained by
conventional allocation are reported in [14], but their
respective latency is not informed. In [15] a different
problem is tackled, where the goal is to find a scheduling
for a fixed number of registers and, again, latencies are not
informed. Observe that for the example Wakabayashi, we
have obtained the best reported values. For the example
Kim, we have obtained a worse value than in [14].
However, since the respective latency is not reported, the
better result found in [14] is likely to belong to a solution
with larger latency than ours, which would explain the
smaller number of registers. In [9], which describes a
method also based on predicates, register allocation is
unfortunately not addressed for examples rotor and s2r.

Table 3: Number of registers for the example
Wakabayashi.

Our
approach

χ in [14]
Typical

allocation

χ in [14] χ in [15]
AD
D

SU
B

COM

λ χ λ χ λ χ λ χ
2 1 1 7 4 - 5 - 4 - 4

Table 4: Number of registers for the example Kim.

Our
approach

χ in [14]
Typical

allocation

χ in [14] χ in [15]
ADD

SUB

COM

λ χ λ χ λ χ λ χ
3 2 1 5 7 - - - - - 4
3 3 1 5 7 - 8 - 4 - -

ExistConflict (u, v){
 if (Pu ∩ Pv ≠ ∅)
 return(TRUE);
 else
 return(FALSE);
}

7. CONCLUSIONS AND PERSPECTIVES

This paper has presented a way of using predication to
allow global scheduling and global register allocation.
Experimental results for scheduling show that our
modeling can reach the best known latencies for all the
tested examples. Few results were published about register
allocation under conditional execution. In spite of the
ensuing difficulty to making direct comparisons, our
experimental results seem promising. In any case, in the
face of the scarcity of published results about global
allocation in HLS, our results are already a contribution.
Such scarcity is perhaps an evidence that this topic
deserves further investigation and more experiments
should be performed and reported.

8. REFERENCES

[1] AIKEN, A.; NICOLAU, A. “A Resource-

Constrained Software Pipelining”, IEEE
Transactions on Parallel and Distributed Systems,
vol. 6, nº 12, december of 1995.

[2] BERGAMASCHI, R. A. et al. “Control-Flow
Versus Data-Flow Based Scheduling: Combining
Both Approaches in an Adaptive Scheduling
System”, IEEE Transactions on VLSI Systems, vol.
5, nº 1, pp. 82-100, 1997.

[3] CAMPOSANO, R. “Path-based Scheduling for
Syntesis” IEEE Trans. On Computer-Aided Design,
vol 10, nº 1, january of 1991.

[4] DE MICHELI, Giovanni “Synthesis and
Optimization of Digital Circuits”, Mc Graw-Hill,
USA, 1994.

[5] HENNESSY, J. L.; PATTERSON, D.A.
“Computer Architecture: A Quantitative
Approach”, Morgan Kaufmann Publishers, Second
Edition, 1996.

[6] HUANG, S. H. “A Tree-based Scheduling
Algorithm for Control Dominated Circuits”, 30th
ACM/IEEE Design Automation Conference, pp.
578-582, 1993.

[7] KIM, T. et al. “A Scheduling Algorithm for
Conditional Resource Sharing - A Hierarchical
Reduction Approach”, IEEE Trans. on CAD, vol
13, nº 4, april of 1994.

[8] KIM, T.; Liu JANE W. S.; Liu, C. L. “A
Scheduling Algorithm For Conditional Resource
Sharing”, IEEE, USA, 1991.

[9] RADIVOJEVIC, I.; BREWER, F. “A New
Symbolic Technique for Control Dependent
Scheduling”, IEEE Trans. on Computer-Aided
Design, vol. 15, nº 1, p. 53 , 1996.

[10] SANTOS, Luiz C. V. dos “Exploiting instruction-
level parallelism: a construtive approach”,
Eindhoven University of Technology, PhD. Thesis,
Eindhoven, 1998.

[11] SOMENZI, Fábio “University of Colorado –
USA(http://vlsi.colorado.edu/~fabio)”, january of
2001.

[12] WAKABAYASHI, Kazutoshi; TANAKA, H.
“Global Scheduling Independent of Control
Dependencies Based on Condition Vectors”, Proc.
ACM/IEEE Design Automation Conference,
pp.112-115, 1992.

[13] WAKABAYASHI, Kazutoshi; YOSHIMURA,
Takeshi “A Resource Sharing and Control
Synthesis Method for Conditional Branches” IEEE,
Japan, 1989.

[14] ZHAO, Q.; EIJK, C. A. J. Van “Register Binding
for DSP Code Containing Predicated Execution”,
IEEE, Eindhoven, 1999.

[15] ZHAO, Q.; EIJK, C. A. J. Van; PINTO, C. A. Alba;
JESS, J. A. G. “Register Binding for Predicated
Execution in DSP Applications”, IEEE, Eindhoven,
2000.

