
ON THE STUDY OF THE EFFECTIVENESS OF
SW-BASED FAULT HANDLING MECHANISMS TO

COPE WITH IC CONDUCTED ELECTROMAGNETIC INTERFERENCE

F. Vargas, D. Brum, D. Prestes, L. Bolzani, D. Lettnin, G. Rodrigues

Electrical Engineering Dept.
Catholic University – PUCRS

Av. Ipiranga, 6681. 90619-900 Porto Alegre – Brazil
vargas@computer.org

Abstract
We present hereafter a study on the effectiveness of two software-based fault-handling mechanisms in terms of detecting
harmful conducted electromagnetic interference in ICs. Originally, these techniques were proposed to protect systems
against transient faults in memory elements (i.e., single-event upsets: SEUs). One of these techniques deal with processor
control flow checking. The second one is used to detect errors in code variables. In order to check the effectiveness of such
techniques in RF ambient, spurious electromagnetic-induced noise according to the International Standard IEC 61000-4-
29 Normative was modeled and injected into the supply lines of a commercial off-the-shelf (COTS) microcontroller-based
system. Experimental results suggest that the considered techniques present a marginal effectiveness to detect this type of
faults. This is due probably to the multiple-fault injection nature of electromagnetic interference in the processor control
flow and data, which in most cases results in a complete system functional loss (the system must be reset).

Keywords: Electromagnetic Interference, Electromagnetic Immunity (EMI), Conducted RF Noise Modeling, International
Standard IEC 61000-4-29 Normative, Design-for-Electromagnetic Immunity (DEMI), Software-Based Fault Detection,
Fault Injection.

ON THE STUDY OF THE EFFECTIVENESS OF
SW-BASED FAULT HANDLING MECHANISMS TO

COPE WITH IC CONDUCTED ELECTROMAGNETIC INTERFERENCE1

F. Vargas, D. Brum, D. Prestes, L. Bolzani, D. Lettnin, G. Rodrigues

Electrical Engineering Dept.
Catholic University – PUCRS

Av. Ipiranga, 6681. 90619-900 Porto Alegre – Brazil
vargas@computer.org

1 This work is partially supported by CNPq and FAPERGS.

Abstract
We present hereafter a study on the effectiveness of two
software-based fault-handling mechanisms in terms of
detecting harmful conducted electromagnetic interference
in ICs. Originally, these techniques were proposed to
protect systems against transient faults in memory
elements (i.e., single-event upsets: SEUs). One of these
techniques deal with processor control flow checking. The
second one is used to detect errors in code variables. In
order to check the effectiveness of such techniques in RF
ambient, spurious electromagnetic-induced noise
according to the International Standard IEC 61000-4-29
Normative was modeled and injected into the supply lines
of a commercial off-the-shelf (COTS) microcontroller-
based system. Experimental results suggest that the
considered techniques present a marginal effectiveness to
detect this type of faults. This is due probably to the
multiple-fault injection nature of electromagnetic
interference in the processor control flow and data, which
in most cases results in a complete system functional loss
(the system must be reset).

Keywords: Electromagnetic Interference, Electromagnetic
Immunity (EMI), Conducted RF Noise Modeling,
International Standard IEC 61000-4-29 Normative,
Design-for-Electromagnetic Immunity (DEMI), Software-
Based Fault Detection, Fault Injection.

Terminology:

• Conducted electromagnetic interference
(Conducted-EMI): transients and/or other disturbances
observed on the external terminals of a device during its
normal operation. (In general, the external terminals are the
power supply lines.)

• Electromagnetic Environment (RF ambient): totality
of electromagnetic phenomena existing at a given location.

• Electromagnetic compatibility (EMC): ability of an
integrated circuit, system or equipment to function
satisfactorily in its electromagnetic environment without
introducing intolerable electromagnetic disturbances to
anything in that environment.

• Radiated electromagnetic interference (Radiated-
EMI): phenomena by which energy in the form of
electromagnetic waves emanates from a source into space
(or: energy transferred through space in the form of
electromagnetic waves.) to affect electronic systems.

• Immunity (to a disturbance): the ability of a device,
equipment or system to perform without degradation in the
presence of an electromagnetic disturbance.

• Short interruption: the disappearance of the supply
voltage at a point of the low voltage D.C. distributed system
for a period of time typically not exceeding 1 min. In practice,
a dip with a least 80% of the rated voltage may be
considered as an interruption.

• Voltage dip: a sudden reduction of the voltage at a point in
the low voltage D.C. distribution system, followed by a
voltage recovery after a short period of time, from a few
milliseconds up to a few seconds.

• Voltage variation: a gradual change of the supply voltage
to a higher or lower value than the rated voltage. The
duration of the change can be short or long.

1. Introduction

The electromagnetic EM environment in which
electronic systems have to operate is becoming
increasingly hostile while dependence on electronics is
widespread and increasing. The need for assurance that
application upsets due to the EM environment will not
occur is fundamental to acceptance of systems as fit for
purpose. In order to solve such problems, design features
to impart EM hardness (i.e., Design for Electromagnetic
Immunity – DEMI) are beginning to be implemented, but
at very high cost in terms of system performance, power
consumption, and implementation complexity [1-3].

Fig. 1 summaries technology trends impact on
ICs [1]. Note in this figure that although the reduction of
supply voltages (at least for the core part) rises the hope
for less electromagnetic emission (conducted and
radiated), this benefit is immediately compensated by a
drastically increased number of simultaneously switching
transistors per die, combined with faster switching edges
due to increasing clock rates. Thus, increasing the total RF
noise that can affect embedded functional blocks inside
the die itself, as well as affect other dies or ICs placed
nearby it. For instance, it is well known that dynamic
switching currents in the supply lines on the silicon die are
one of the main sources of radiated electromagnetic
emission which causes the power lines to behave as
antennas and to radiate undesired noise. This RF signal
induces embedded (more sensitive) functional blocks in
the die to suffer from spurious current switching spikes. In
addition to affect the functional blocks, these current
spikes are conducted in the form of noise outside the IC
through the supply and/or data lines and may affect several
other components mounted on the application board [4].

Fig. 1. Technology trends impact on ICs [1]. (EME:
Electromagnetic Emission; EMS: Electromagnetic
Susceptibility.)

Most of the solutions found in the literature
dealing to minimize electromagnetic emissions are design-
based propositions [1]. In general, they intend to reduce
the dynamic switching currents or optimize distribution of
switching currents over time. As examples, block
decoupling capacitors and improved pad-drivers design
contribute to the first, while clock concepts with
intentional non-zero skew to the second. Note that since
I/O signals are important contributors to undesired RF
emission in electronic systems, the design of pad drivers as
weak as possible could contribute to minimize RF
emission. However, note also that this solution leads to a
more sensitive IC to noise as well as may expose it to
delay faults since transistors become slower with higher
temperatures.

Considering the design of ICs with non-zero skew
clock signals, this measure effectively reduces
electromagnetic emission. However, clock smearing by

defining rising and falling edges to occur at different times
along with the supply lines plane goes against technology
scaling, since a “good” design mandates the
implementation of ICs with as perfect as possible
synchronized (zero-skew) control signals distributed all
over the IC functional blocks. Note also that the zero-skew
trend is naturally supported by today’s design tools, but if
chip designers should take advantage from implementing
the clock smearing concept for the sake of reduced RF
emission, he/she should perform this clock distribution
modification by him/herself, since today’s tools do not
support directly non-zero clock signal design.

Considering the above introduced, the proposed
work has three objectives: (a) briefly overview the EM
interference effects on electronic systems, (b) evaluate the
effectiveness of some classical SW-based fault detection
mechanisms in detecting EM-induced faults and (c) derive
alternative low-cost approaches to improve systems EMI.

2. Preliminaries: Conducted Electromagnetic
Interference on Electronics

The huge increase in the use of portable
electronics combined with increasingly hostile
electromagnetic environment has intensified the need to
include design and test methods for electromagnetic
immunity in particular to low power IC-based
applications. In the presence of electromagnetic RF
incident field (produced for example by the cellular phone
transmitting antenna), cables connected to electronic
systems and PCBs’ tracks behave as receiving antennas
capturing disturbances. The induced RF currents reach the
inputs ports of ICs and often produce system
malfunctioning [6].

In fact, the coupling effect between
electromagnetic RF incident field and tracks routed on the
die surface is lower than that one between electromagnetic
(RF) incident field and PCB tracks connected to the input
ports of an IC. In such a noisy environment, there are two
types of failures induced by conducted RF interference on
ICs [6]:

a) Static failures: occur in the presence of conducted
RF interference superimposed on high or low
logical level. The signal at the IC input port goes
out of high or low noise margins. Sometimes, it
can be observed synchronization between the
input signal and the RF interference. In this case,
errors at the IC’s output ports come from failures in
the IC input ports.

b) Dynamic failures: occur when conducted RF
interference added to the IC input logical signal
gives variation in the input port propagation delay.
Thus, changing the logic gates settling time and
hold time. In this case, errors due to conducted RF
interference observed at the IC’s output ports
come from failures in internal sub-circuits.

The induced RF currents that reach the input
ports of ICs may be caused from a simple voltage variation
to a large voltage interruption in the IC power supply
lines. Therefore, in an attempt to contribute to minimize
such disruptions, we are concerned in this work with the
following EM effects on electronics: a) voltage dips, b)
interruptions, and c) voltage variations of the IC power
supply lines. To do so, in Section 4 we have conducted
experiments based on the International Standard IEC
61.000-4-29 Normative [5]. This standard is one of the
references to test ICs for conducted RF noise on power
lines.

3. The SW-Based Fault Handling Mechanisms

This section describes in detail the two software-
based techniques we have selected from the literature. In
fact, a dedicated reader can find several purely software-
based techniques dealing to handle, for instance, control-
flow faults. Some representative examples are: [10-13].
However, in this work we decided for the two techniques
[8,14] described later not only because they are purely
software-implemented approaches (i.e., completely
hardware-independent in order to be used in commercial-
off-the-shelf (COTS) processors), but also because they
were fully automated (there existed at the time we started
this work a compiler tool [7] used to automatically modify
the C-implemented code into a fault-tolerant one
according to the definitions presented in the following).

a) Faults affecting data: having these goals in
mind, we selected the technique proposed by Matteo et al.
[8], which is based on the following three basic rules:

• Rule #1: every variable x must be duplicated: let
x1 and x2 be the names of the two copies;

• Rule #2: every write operation performed on x
must be performed on x1 and x2;

• Rule #3: after each read operation on x, the two
copies x1 and x2 must be checked for
consistency, and an error detection procedure
should be activated if an inconsistency is
detected.

The above rules mean that any variable v must be
split in two copies v0 and v1 and that these copies should
always store the same value. A consistency check on v0
and v1 must be performed each time the variable is read.
The check must be performed immediately after the read
operation in order to block the fault effect propagation.
Also, each instruction that writes variable v must also be
duplicated in order to update the two copies of the
variable.

Additionally, note that the variables should also
be checked when they appear in any expression used as a

condition for branches or loops, thus allowing detection of
errors that corrupt the correct control flow execution of a
program.

Every fault that occurs in any variable during the
program execution can be detected as soon as the variable
is the source operand of an instruction, i.e., when the
variable is read. Thus resulting in minimum error latency,
which is approximately equal to the distance between the
fault occurrence and the first read operation. In this
technique, errors affecting variables after their last usage
are not detected. Fig. 2 illustrates two simple examples, by
showing the code modification for an assignment
operation and for a sum operation involving three
variables a, b, and c.

Modified Code: Original Code:

a = b; a0 = b0;
a1 = b1;
if(b0 != b1)

error();

a = b + c; a0 = b0 + c0;
a1 = b1 + c1;
if (b0 != b1) || (c0 != c1)

error();

Fig. 2. Code modification for errors affecting data.

The parameters passed to a procedure, as well as
the returned values should be considered as variables.
Therefore, the rules defined previously should be extended
as follows:

• Every procedure parameter is duplicated;

• Each time the procedure reads a parameter,
it checks the two copies for consistency;

• The return value is also duplicated (in C, this
means that the addresses of the two copies
are passed as parameters to the called
procedure).

Fig. 3 depicts an example of application of Rules
#1 to #3 to the parameters of a procedure.

b) Faults affecting the control flow: in order to
detect this type of faults, we selected also another
approach proposed by Matteo and his group and first
presented in [8].

For the purpose of the work proposed by Matteo,
errors affecting control flow can be divided into two
categories, depending on the way they transform the
statement whose code is modified:

• Type Error-A: errors changing the control flow by
affecting data in arithmetic expressions, computations,
and assignments, for instance. As example, consider an
error transforming an add operation into a jump one.

• Type Error-B: errors changing the control flow by
affecting data in tests, loops, procedure calls, and
returns, for instance. As example, consider an error
transforming a data i into an i’ (in the assumed example,
i is compared to j in a conditional branch-taken decision
instruction).

Modified Code: Original Code:

res = search(a); search(a0, a1, &res0, &res1);
… …
int search(int p) void search(int p0, int p1, int *r0, int *r1)
{ int q; { int q0, q1;

… …
q = p + 1; q0 = p0 + 1;
… q1 = p1 + 1;
return(1); if(p0 != p1)

} error();
…
*r0 = 1;
*r1 = 1;
return;

}

Fig. 3. Code transformation for errors affecting
procedure parameters.

The Matteo’s solution for detecting errors of type
Error-A is based on tracking the execution flow by trying
to detect differences with respect to the correct behavior.
This task is performed by first identifying all the basic
blocks composing the code. A basic code is a sequence of
statements, which is always indivisibly executed (i.e., they
are branch-free). The following rules are then introduced,
in order to check whether all the statements in every basic
block are executed in sequence:

• Rule #4: an integer value ki is associated with every
basic block i in the code;

• Rule #5: a global execution check flag (ecf) variable is
defined. A statement assigning to ecf the value of ki is
introduced at the very beginning of every basic block i. A
test on the value of ecf is also performed at the end of
the basic block.

The aim of the above rules is to check whether
any error happened, whose effect is to modify the correct
execution flow, and to introduce a jump to an incorrect
target address. An example of this situation is an error
modifying the field containing the target address in a jump
instruction. As a further example, consider an error that
changes an ALU instruction (e.g., an add) into a branch
one: if the instruction format includes an immediate field,
this may possibly be interpreted as a target address.
Unfortunately, note also that the above rules have an
incomplete detection capability since there are some fault
types that cannot be detected (e.g., any error producing a

jump to the first assembly instruction of a basic block: thus
assigning to ecf the value corresponding to the block; or
even any erroneous jump into the same basic block). Fig. 4
provides an example of application of Rules #4 and #5.

When Error-B type is considered, the issue is
how to verify that the correct execution flow is followed.
In order to detect errors affecting a test statement, is was
introduced the following rule:

• Rule #6: for every test statement, the test is repeated
at the beginning of the target basic block of both the
true and (possible) false clause. If the two versions of
the test (the original and the newly introduced) produce
different results, an error is signaled.

Fig. 5. provides an example of application of the
above rule. In order to simply the presentation of the rule,
we do not consider in the examples the combined
applications of different rules: as an example, in fig. 5 we
did not apply Rules #1 and #2 to the variable named
condition, which should be duplicated and checked for
consistency after the test.

Modified Code: Original Code:

/* Basic Block beginning */ /* Basic Block beginning #371 */
… ecf = 371;
/* Basic Block end */ …

if (ecf != 371)
error ();

/* Basic Block end */

Fig. 4. Example of application of Rules #4 and #5 to
detect error types Error-A and Error-B.

Modified Code: Original Code:

If (condition) If (condition)
{ /* Block A */ { /* Block A */

… if (!condition)
} error();
else …
{ /* Block B */ }

… { /* Block B */
} if (condition)

error();
…

}

Fig. 5. Code transformation for a test statement (Rule #6).

4. Practical Experiments

This section synthesizes the experimental results
that we have carried out in order to verify the effectiveness
of the SW-based fault-tolerant techniques presented in the
previous section. Having this goal in mind, we modeled
and injected spurious electromagnetic noise into the power
lines of a commercial off-the-shelf (COTS)
microcontroller-based system. The noise modeling and

injection procedure was oriented by the International
Standard IEC 61.000-4-29 Normative, which rules testing
proceedings for voltage dips, voltage interruptions, and
voltage variations. Table I summarizes the types and
durations of the noise injected into the power lines.

For each of the tests to be described hereafter, we
have classified the system under test according one of the
following performance criteria:

Class A: no performance degradation is
verified. In this case, either no erroneous output was
detected, or the error-detection techniques implemented in
the system under test were able to indicate the faulty
output.

Class B: performance degradation is verified
only during testing. A change in state or loss of data is
permissible, however, a self-recovery is expected during
normal operation (i.e., after testing). In this case, one or
more erroneous output was generated, but the
implemented error-detection techniques were not able to
detect their occurrence.

Class C: performance degradation may occur
and it remains in this condition until the user/operator
resets the system. In this case, one or more erroneous
output was generated, and the implemented error-
detection techniques were not able to detect their
occurrence. As consequence, the system was set out of
operation, which required the user intervention to recover
from this situation.

TYPE OF
DISRUPTION

Description: waveform and time duration

10ms

100ms

300ms

a negative pulse of -30% of
the Vcc power line

X*

10ms

100ms

300ms

Voltage Dips

a negative pulse of -60% of
the Vcc power line

X*

10ms

100ms

300ms
Short Interruptions a negative pulse of -100% of

the Vcc power line

X*

Voltage Variations
a variation of –20% to +20%

of the Vcc power line
continuous variation
in the Vcc power line

* Open value(s) to be defined by the specific application or device to be
tested.

Table I. Summary of the IEC 61.000-4-29 Normative for
voltage dips, short interruptions, and voltage
variations [5].

Fig. 6 shows an oscilloscope printscreen
indicating the -30% voltage dips injected into the

microcontroller Vcc pin according to the IEC 61.000-4-29
Normative. These pulses were randomly generated in time,
with a minimum of 3 pulses at every 10ms.

Fig. 6. Oscilloscope printscreen of voltage dips injected
into the microcontroller Vcc pin. Negative pulse of
-30% (-0.9V) and width of 30ms. (Nominal Vcc =
3.0V.)

Fig. 7 shows the test setup used to inject
electromagnetic-induced noise into the processor Vcc
power line. This setup is organized around a PC-based
host, whose goal is to serve as interface between the user
and the device under test (MSP430-1 Board). This server
communicates with the MSP430-1 via RS232 and JTAG
(optic fiber) by one side and with the fault injection
controller (or EMI Generator): MSP430-2 Board, by the
other side. As can be seen in this figure, the program
stored in the flash memory of the EMI Generator deals to
control the Driver Board by means of sending control
signals to the digital-to-analog converter (DAC). Based on
a reference voltage (REF), this converter translates the
digital command into an analog signal which controls the
operational amplifier (Op Amp, in the Driver Board).
Then, the Op Amp output generates the corresponding
analog “noisy Vcc signal” which is injected in the form of
voltage dips into the MSP430-1 processor Vcc power pin
(i.e., the device under test – DUT).

The DUT in the MSP430-1 Board is a Texas
Microcontroller MSP430F149 [9] which contains 60KB
flash memory to store control program, and 2KB of RAM
to store data as well as control state variable. This RAM
also serves as stack area for the control part. Similarly, the
MSP430-2 Board is also based on the same
microcontroller device.

Table II shows results for the DUT executing as
application an image linearization processing. In this
example, the image consisted of 238 data bytes whose
average value had to be computed (i.e., linearized) for
every group of 9 pixels in order to filter noise represented
by large discrepancies present in neighbor pixels values.

Fig. 7. Test setup used for electromagnetic-induced
noise injection2.

For this table, we have injected 85 voltage dips as
seen in Fig. 6, for 5 different pulse time durations (10ms,
30ms, 100ms, 300ms, and 1s), in a total of 425 voltage
dips injected in the DUT. The results displayed in this
Table II can be interpreted as follows: for instance, for the
85 0.01ms time duration voltage dips, 36 functional errors
were verified. From this number, 63.89% were detected by
the SW-based techniques described in the previous
section, and XXX by the watch-dog-timer (WDT), i.e., by
hardware. From the 63.89% of the faults detected, 82.61%
were errors in data, while 17.39% were faults in the
control flow of the processor. Figs. 8, 9, and 10 display
individual results extracted from Table II.

Table III and Figs. 11, 12, and 13 summarize the
same type of information shown in Table II and Figs. 8, 9,
and 10. However, these results were obtained for a Bubble
Sort Program running as the application in the DUT in the
MSP430-1 Board. This Bubble Sort Program performs
data reordering in a 238-databyte array.

Discussions:

As the reader can observe, Table II and Figs. 8, 9,
and 10 (say Test Set I) indicate clearly the results pointing
to a larger number of errors in the data used by the
application than the number of errors in the control flow of
the processor. This situation is exactly the opposite, when

2 There are several professional EMI generators commercially
available in the international market [11]. However, it should be
noted that their typical prices could vary from two or three tens of
thousands of dollars up to one hundred thousand dollars a unit.
On the other hand, the test setup presented here is a simple,
customized and economical conducted-EMI generator whose
price turns around three thousand dollars a unit.

compared with the results presented in Table III and Figs.
11, 12 and 13 (say Test Set II). In this latter case, the
number of control flow errors is dominant with respect to
the one of data errors. This occurrence of data- or control
flow-error dominance seen in Test Sets I and II can be
explained by the profile of the application programs: while
the Image Processing Program is data dominant in
comparison to the number of instructions in the code, the
Bubble Sort Program is control-dominant in the sense of
several instructions executed on a compared reduced set of
data.

Another conclusion taken from Figs. 10 and 13 is
that the effectiveness of the control-flow error detection
techniques is probably better than those used to protect
data when conducted electromagnetic interference
(Conduced-EMI)-induced disruptions are considered.
However, this conclusion needs a deeper analysis with
complementary practical tasks to clear some not yet
answered questions: Was there any fault generated in
memory that could affect control-flow or data and that
this error was generated after the processor had executed
that part of the code? If so, note that this (or these) fault(s)
was (were) not detected by the fault detection strategies,
but it (they) did account to increase the number of (latent)
errors since it (they) would be propagated to primary
outputs (PO) sometime in the future program runs. (Note
that errors are detected by reading out the whole 2k-RAM
memory containing data and control flow variables for the
processor and by comparing them with a reference (gold)
memory setup obtained by a fault-free simulation run).

Another important conclusion should be taken by
observing that the average fault detection rate for the SW-
based techniques is 70.63% (Image Processing Program)
and 84.23% (Bubble Sort Program), as seen in Figs. 10
and 13, respectively. As consequence, the proposed SW-
based techniques (and probably several other SW-based
fault detection approaches found in the literature, since
they present roughly similar principles [10,11]) do offer a
marginal protection level to Conducted-EMI such as
specified for voltage dips in the IEC 61.000-4-29.

On the other hand, after coupling the SW-based
approaches with watch-dog-timer, the resulting average
fault detection rate rises from 70.63% to 87.89% (Table II,
Fig. 10) and from 84.23% to 90.10% (Table III, Fig. 13),
which in both cases represent a considerable improvement
of the detection rate.

Thus, having in mind these probability numbers,
it is mandatory to carry out a more dedicated study about
another complementary SW-based techniques to those
presented in this work, if no HW-based fault detection is
desired to be used. The possibility of proposing new fault-
handling techniques, more adequate to detect conducted
EMI-induced faults should also be strongly considered for
future work. This solution is very important because the

decision for using HW-based fault detection techniques
could increase the whole system cost beyond acceptable
values, or maybe because most of the existing COTS-

based systems are not at all designed by considering fault
detection based on dedicated HW structures.

���
���
���
���
���
���
���
���
���

Not Detected
Observed HW-Based Faults(%)

Errors % Data % Control Technique (WDT)

27,79 8,32
82,61 17,39

24 28
100 0

0 0
100 0

0 0
0 0

0 0
0 0

1 0
0

0,3 0
0

0,1 1
100

0,03 25
48

Detected Faults (%)

Duration (s)
SW-Based Techniques (%)

0,01 36
63,89

Table II. Fault Detection Summary for the 238-databyte Image Processing Program and Voltage Dips of -30% of the Nominal Vcc.
(Nominal Vcc = 3.0V.)

Fig. 8. “Data” versus “Control” Error Detection Summary. (238-databyte Image Processing Program. Voltage Dips of –30%.)

Fig. 9. Fault-Detection Capability Summary for the SW-Based Fig. 10. SW-Based Fault Detection Summary. (238-databyte
Techniques. (238-databyte Image Processing Program. Image Processing Program. Voltage dips of –30%.)
Voltage Dips of –30%.)

Detection Rate for Different Voltage Dip Durations
(Including Data and Control-Flow Errors)

0%

20%

40%

60%

80%

100%

0,01 0,03 0,1 0,3 1

Duration (s)

% Not Detected

% Detected

SW-Based Fault Detection Summary
(Including Data and Control-Flow Errors)

70,63

29,37

% Detected

% Not Detected

Errors Observed for Different Voltage Dip Durations

0%

20%

40%

60%

80%

100%

0,01 0,03 0,1 0,3 1

Duration (s)

Control-f low Errors

Data Errors

��
��
��
��
��
��
��
��
��

Not Detected
Observed HW-Based Faults(%)

Errors % Data % Control Technique (WDT)

16,95 0
39,8 60,2

4,285 12,855
32,76 67,24

1,88 11,32
21,74 78,26

0 12,82
20,59 79,41

6,25 12,5
15,38 84,62

1 16
81,25

0,3 39
87,18

0,1 53
86,79

0,03 70
82,86

Detected Faults (%)

Duration (s)
SW-Based Techniques (%)

0,01 85
83,05

Table III. Fault-Detection Summary for the 238-databyte Bubble Sort Program and Voltage Dips of -30% of the Nominal Vcc.
(Nominal Vcc = 3.0V.)

Fig. 11. “Data” versus “Control” Error Detection Summary. (238-databyte Bubble Sort Program. Voltage Dips of –30%.)

Fig. 12. Fault-Detection Capability Summary for the SW-Based Fig. 13. SW-Based Fault Detection Summary. (238-databyte
Techniques. (238-databyte Bubble Sort Program. Voltage Dips of Bubble Sort Program. Voltage dips of –30%.)
–30%.)

5. Final Considerations & Conclusions

We have presented in this work a preliminary
study to verify the capability of conventional fault-
detection techniques to detect faults induced by conducted
electromagnetic interference (Conducted-EMI). So far,
these techniques have been commonly used to detect

radiation-induced single-event upsets (SEUs) in memory
elements and transient faults in logic.

The obtained results from practical experiments
indicate to the direction of marginal fault detection
capability due probably to:

Detection Rate for Different Voltage Dip Durations
(including data and control-flow errors)

0%

20%

40%

60%

80%

100%

0,01 0,03 0,1 0,3 1

Duration (s)

Not Detected

Detected

SW-Based Fault Detection Summary
(Including Data and Control-Flow Errors)

84,23

15,78

Detected (%)

Not Detected (%)

Errors Observed for Diferent Voltage Dip
Durations

0%

20%

40%

60%

80%

100%

0,01 0,03 0,1 0,3 1

Duration (s)

Control-flow Errors

Data Errors

a) the multiple generation nature as the primary effect of
conducted-EMI on the processor power-bus;

b) the not compiler-visible control-flow variables used by
the processor architecture, which cannot be accessed
by the programmer and thus, cannot be modified in
order to become EMI-hardened.

In this sense, more adequate or adapted fault
coverage based uniquely on the use of SW-implemented
fault detection techniques must be studied from the
literature. Alternatively, new ones must be proposed in
order to reach higher levels of fault coverage uniquely
based on the use of SW-implemented fault detection
techniques.

As the present work was involved only with
voltage dips, voltage interruptions and voltage transients
must also be studied in the future in order to attend the
whole IEC 61.000-4-29 International Standard
Normative. During this procedure, the processor must be
exercised with different clock frequencies than the fixed
8MHz we have used in the present work.

References

[1] Steinecke, T. Design-In for EMC on CMOS large-
Scale Integrated Circuits. International
Symposium on Electromagnetic Compatibility –
EMC’2001. Vol. 2 , 2001. pp. 910 –915.

[2] Perez, R. Signal Integrity Issues in ASIC and
FPGA Design. International Symposium on
Electromagnetic Compatibility – EMC’1997. 1997.
pp. 334 -339.

[3] Whyman, N. L.; Dawson, J. F. Modelling RF
Interference Effects in Integrated Circuits.
International Symposium on Electromagnetic
Compatibility – EMC’2001. Vol.2, 2001. pp. 1203
–1208.

[4] Tzimenakis, J.; Holland, D. Understanding the
EMC Directive: Everything Made Clear.
Gainspeed Ltd, UK, 2000.
(jimtz@gainspeed.freeserve.com.uk)

[5] International Electrotechnical Commission -
International Standard IEC 61000-4-29
Normative. (www.iec.ch)

[6] Fiori, F.; Benelli, Gaidano, G.; Pozzolo, V.
Investigation on VLSIs’ Input Ports Susceptibility
to Conduct RF Interference. IEEE Transactions
on Electromagnetic Compatibility, 1997. pp.326-
329.

[7] www.polito.it/~sonza

[8] Rebaudengo, M.; Sonza Reorda, M.; Torchiano,
M.; Violante, M. Soft-Error Detection Through
Software Fault-Tolerance Techniques. IEEE
Design for Testability Workshop (DFT’99), 1999.

[9] Microcontroller Texas MSP430F149.
(www.ti.com)

[10] Miremadi, G.; Karlsson, J.; Gunneflo, U.; Torin, J.
Two Software Techniques for On-Line Error
Detection. IEEE Transactions on
Electromagnetic Compatibility, 1992. pp.328-335.

[11] Miremadi, G.; Torin, J. Evaluating Processor-
Behavior and Three Error-Detection Mechanisms
Using Physical Fault-Injection. IEEE
Transactions on Reliability. Vol. 44, No. 3,
September 1995. pp. 441-454.

[12] Chillarege, R.; Bowen, N. S. Understanding Large
Systems Failures – A Fault Injection Experiment.
19th International Symposium on Fault-Tolerant
Computing - FTCS-19. 1989. pp. 356-363.

[13] Oh, N.; Shirvani, P. P.; McCluskey, E. J. Control-
Flow Checking by Software Signatures. IEEE
Transactions on Reliability. Vol. 51, No. 2, March
2002. pp. 111-122.

[14] www.cad.polito.it/cooperations/TOSCA/TOSCA.htm

