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ABSTRACT 
 
Some speech recognition applications, like speaker verification, dialog recognition or speech to text transcription could 
require real time processing and a good precision. Other applications such as toys, automotive vehicles or portable 
machines still could aggregate portability and low-power requirements, in addition to physical compactness. A specific 
hardware could be a solution for this problem. 
     The current work proposes an architecture using hardware based in FPGAs, optimizing the pre-processing and 
parameter extraction for performing efficient speech recognition. 
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ABSTRACT 

 
Some speech recognition applications, like speaker 
verification, dialog recognition or speech to text 
transcription could require real time processing and a 
good precision. Other applications such as toys, 
automotive vehicles or portable machines still could 
aggregate portability and low-power requirements, in 
addition to physical compactness. A specific hardware 
could be a solution for this problem. 
     The current work proposes an architecture using 
hardware based in FPGAs, optimizing the pre-processing 
and parameter extraction for performing efficient speech 
recognition. 

 
1. INTRODUCTION 

 
Most of existing speech recognition systems (SRS) is 
based in computer software. However, the requirement of 
a personal computer and a software system could be a 
disadvantage in some applications. For example, a full-
computerized system is not economically viable for a 
washing machine or a TV device control. In such cases, 
specific hardware may be a solution. 
 Moreover, a hardware speech recognition system, 
with a datapath specification based in speech recognition 
algorithms, could be faster than a general-purpose 
processors implementation [1] [2]. 
 The goal of this work is to implement functional 
blocks for a portable speech recognition system of isolated 
words, using FPGAs [3]. In the next sections each system 
component, is shown. 
 

2. PRE-PROCESSING SYSTEM 
Pre-processing has a pre-emphasis block, a frame division 
function and a windowing block. 
 The input is the voice signal, filtered by an anti-
aliasing filter and converted to digital format. Voice signal 

was recorded in 16 bits RAW format and 11025Hz 
sampling rate. 
 
2.1 Pre-emphasis Function 
 
Digital voice signal S(n) is filtered by a pre-emphasis filter:  

)1(.)()(~ −−= nSanSnS pre                    (1) 

where )(~ nS  is the filter output [6]. The rational number 
15/16 was used for pre-emphasis coefficient, apre, because 
simplicity of division by 16 which reduces hardware 
complexity. 
 Equation 1 was modified for fixed point 
implementation: 
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 In figure 1, the pre-emphasis datapath is shown. A 
division circuit, a 20 bits adder, a 16 bits subtractor, an 
accumulator and two registers were used. 
 

 
Figure 1. Pre-emphasis datapath. 

 
 For external data, 16-bits were used. However, 
internal operations use a 20-bits datapath in order to get a 



better precision. Division by 16 was obtained making a 4-
bits shift right and introducing four zeros in more 
significant bits position, to allow one clock pulse division. 
 
2.2 Frame Separation Function 
 
After pre-emphasis, voice signal is separated in 
overlapping frames i=0 ... T-1, where T is the number of 
frames that voice signal could be divided. Each frame is 
formed by 252 voice samples (22ms aprox.) to guarantee 
stationarity [4]. Moreover, the samples number (252) 
allows a frame composition by three equal size blocks (84 
samples, each block), necessary for frame overlapping 
pipeline design. 

Because of the frame size and overlap, each sample 
falls into the first third of current analysis frame, the 
second third of previous analysis frame and the final third 
of the two previous analysis frames. After 84 samples, 
when one of the three frames is completed, the 
relationship of the three analyzed frames rotates 
cyclically. 

An algorithm that allows optimal hardware 
implementation of frame separation and overlapping was 
developed. The algorithm operates in the next manner: In 
order to obtain the frames, samples after pre-emphasis are 
segmented in blocks j=1...T, where T is the number of 
blocks that could be formed from the voice signal. Figure 
2 shows the blocks segmentation. Each block j has 84 
samples, with non-overlap between blocks. Three 
successive blocks (252 samples) compose each frame  

 
Figure 2. Overlap between frames. 

 
An internal dual-port RAM memory, that allows read/write 
parallel operations, was used for temporal storage of 252 
samples. This memory was divided in three memory segments 
Mi, i=0...2, where each segment has 84 samples.  

Figure 3 shows frame separation operation. Each 
new block j begins to be stored in the segment memory 
Mi where the samples of the two previous blocks are 
stored. Each block is multiplied by the correspondent 
values of Hamming window, w(n), n=0...251, before 

storing in memory. Finally, the frame multiplied by 
Hamming window is stored in an output register. 

In each time period, only 28 samples of the new 
block are stored. It represents the third part of the 84 
samples of the block. In parallel, the content of the 
segment memory that has the samples of the last block is 
read. In the next time period, the second third of the new 
block is read (28 samples) and the content of the next to 
the last block is also read. In the next period time, the 
final 28 samples of the new block are stored. At the same 
time, the segment memory that corresponds to the last 
block is also read. 
 

 
 

Figure 3. Frame separation using voice signal blocks. 
 
2.3 Windowing Function 
 

The Hamming window has the equation [6]: 
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       (3) 
where Ns is the samples number of each window and 

n is the sample being evaluated. The window size is 252 
samples (22ms aprox.), in order to simplify the Hamming 
window and the frame separation implementation. In 
figure 4, the windowing datapath join with the frame 
division block is shown. 

A ROM memory stores the first 126 values of 
Hamming window (n= 0...125), corresponding to the first 
two quads of the cosine function. The window values for 
other points are calculated using cosine function 
periodicity properties. An up/down binary counter makes 
hamming memory addressing. 



 
Figure 4. Datapaths of windowing and frame 

division. 
 
 

3. MEL-CEPSTRA PARAMETERS EXTRACTION 
SYSTEM 

 
In figure 5, a diagram for the mel-cepstra parameters 
extraction is shown. First, spectral energy is computed for 
windowed sequential frame, using a FFT processor 
[2].After this, the energy in each of the 27 channels of a 
triangular bandpass filters set is calculated. Finally, the 
discrete cosine transform (DCT) of the log energy is 
computed. 

 
Figure 5. Extraction of Mel-cepstra parameters 

 
In figure 6, hardware for triangular filters function is 
shown. The triangular filters values are stored in a ROM. 
A three-stage pipeline is used. The outputs of this bank 
are 27 energy values. 
    A logarithm processor using the CORDIC algorithm [5] 
was implemented in order to obtain the log energy value 
required for this system. Figure 7 shows the logarithm 
processor implementation, formed by a scaling circuit, a 
hardware implementation of the CORDIC algorithm and a 
control unit. The logarithm processor uses 20 clock pulses 
for the calculus of a logarithm value. 
 

 
Figure 6. Triangular filters architecture. 

 
 

 
Figure 7. Logarithm processor. 

 
The outputs of the triangular filters (Filters_Value signal) 
are scaled in order to obtain numbers between 0,5 and 1 
that allows the calculus of the CORDIC algorithm for 
logarithm function. The radix obtained by the scaling is 
used to get the final result of the logarithm operation. 

A DCT pipelined memory optimized algorithm [6] 
was also implemented. In figure 8, the DCT architecture 
is shown. A ROM stores cosine values for the DCT 
calculus. A three stages pipeline was used. 
 



 
Figure 8.  DCT architecture. 

 
4. VECTOR QUANTIZATION 

 
The vector quantization stage (which makes the link 
between the Mel-Cepstra extraction block and the Viterbi 
processor) was designed too.  
The codebook size is 64. Each vector has 27 mel-cepstra 
parameters. Figure 9 shows the vector quantization 
datapath. It uses a RAM memory for temporary storage of 
the mel-cepstra parameters.  A ROM has the centroids 
obtained after training. Training is made offline. 
 
 

5. VITERBI PROCESSOR 
 

A Viterbi decoder for speech recognition was also 
implemented [7]. The goal was the use in left-right 
Hidden Markov models.  
In figure 10, the datapath for the Viterbi processor is 
shown. The addressing circuit for the Viterbi processor is 
shown in figure 11. 
 

 
Figure 9.  Vector Quantization datapath. 

 

 
Figure 10. Viterbi processor datapath. 

 

 
Figure 11.  Addressing circuit for Viterbi processor. 

 



6. EXPERIMENTAL RESULTS 
 

The functions explained above were implemented using 
the Maxplus II tool, in order to use them with FPGAs. 
They implementation in Matlab and in C was also made, 
in order to compare behavioral simulations with hardware 
results. Tests were made with an isolated word small 
vocabulary for industrial control of elevators. 
In table 1, a comparison between the implementation 
using speech recognition in hardware vs. software 
implementation is shown. 
 
 HW SW 
Stage Time(µs) Time(µs) 

Parameter Extraction and 
Pre-processing 

2085 110000 

Vector Quantization 173 440000 

Recognition with Viterbi 
decoding 

3,75 50000 

Table 1.  Hardware vs. software results. 
 

8. CONCLUSIONS 
The speed characteristics of a dedicated circuit, the 
physical space, the flexibility of the VHDL description 
and the potential of FPGA systems make this design 
usable for the development of new applications. Hardware 
description language specification opens the possibility to 
synthesize such systems in different circuit technologies, 
generating application specific integrated circuits. A 
system with these features could be used in the 
experimentation of different stages of speech recognition 
technology, reducing the physical space used by speech 
recognition software running in a PC. 
The system proposed would be used in problems that 
require a small vocabulary and a limited speaker number. 
 
Many optimizations were made, to obtain a low latency 
and a low use of memory.  
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