
IMPLEMENTATION OF VOICE PROCESSING ALGORITHMS IN FPGA
HARDWARE

José L. Gómez-Cipriano 1, 2, Roger P. Nunes 1, Dante A.C. Barone 1

1 Informatics Institute

Federal University of Rio Grande do Sul, Porto Alegre – Brazil

2 Technological and Exact Sciences Institute
Feevale College, Novo Hamburgo-Brazil

ABSTRACT

Some speech recognition applications, like speaker verification, dialog recognition or speech to text transcription could
require real time processing and a good precision. Other applications such as toys, automotive vehicles or portable
machines still could aggregate portability and low-power requirements, in addition to physical compactness. A specific
hardware could be a solution for this problem.
 The current work proposes an architecture using hardware based in FPGAs, optimizing the pre-processing and
parameter extraction for performing efficient speech recognition.

IMPLEMENTATION OF VOICE PROCESSIG ALGORITHMS IN FPGA
HARDWARE

José L. Gómez-Cipriano 1, 2, Roger P. Nunes 1, Dante A.C. Barone 1

1 Informatics Institute

Federal University of Rio Grande do Sul, Porto Alegre – Brazil

2 Technological and Exact Sciences Institute
Feevale College, Novo Hamburgo-Brazil

ABSTRACT

Some speech recognition applications, like speaker
verification, dialog recognition or speech to text
transcription could require real time processing and a
good precision. Other applications such as toys,
automotive vehicles or portable machines still could
aggregate portability and low-power requirements, in
addition to physical compactness. A specific hardware
could be a solution for this problem.
 The current work proposes an architecture using
hardware based in FPGAs, optimizing the pre-processing
and parameter extraction for performing efficient speech
recognition.

1. INTRODUCTION

Most of existing speech recognition systems (SRS) is
based in computer software. However, the requirement of
a personal computer and a software system could be a
disadvantage in some applications. For example, a full-
computerized system is not economically viable for a
washing machine or a TV device control. In such cases,
specific hardware may be a solution.
 Moreover, a hardware speech recognition system,
with a datapath specification based in speech recognition
algorithms, could be faster than a general-purpose
processors implementation [1] [2].
 The goal of this work is to implement functional
blocks for a portable speech recognition system of isolated
words, using FPGAs [3]. In the next sections each system
component, is shown.

2. PRE-PROCESSING SYSTEM
Pre-processing has a pre-emphasis block, a frame division
function and a windowing block.
 The input is the voice signal, filtered by an anti-
aliasing filter and converted to digital format. Voice signal

was recorded in 16 bits RAW format and 11025Hz
sampling rate.

2.1 Pre-emphasis Function

Digital voice signal S(n) is filtered by a pre-emphasis filter:

)1(.)()(~ −−= nSanSnS pre (1)

where)(~ nS is the filter output [6]. The rational number
15/16 was used for pre-emphasis coefficient, apre, because
simplicity of division by 16 which reduces hardware
complexity.
 Equation 1 was modified for fixed point
implementation:

16
)1()1()()1(.

16
15)()(~ −+−−=−−= nSnSnSnSnSnS

 (2)
 In figure 1, the pre-emphasis datapath is shown. A
division circuit, a 20 bits adder, a 16 bits subtractor, an
accumulator and two registers were used.

Figure 1. Pre-emphasis datapath.

 For external data, 16-bits were used. However,
internal operations use a 20-bits datapath in order to get a

better precision. Division by 16 was obtained making a 4-
bits shift right and introducing four zeros in more
significant bits position, to allow one clock pulse division.

2.2 Frame Separation Function

After pre-emphasis, voice signal is separated in
overlapping frames i=0 ... T-1, where T is the number of
frames that voice signal could be divided. Each frame is
formed by 252 voice samples (22ms aprox.) to guarantee
stationarity [4]. Moreover, the samples number (252)
allows a frame composition by three equal size blocks (84
samples, each block), necessary for frame overlapping
pipeline design.

Because of the frame size and overlap, each sample
falls into the first third of current analysis frame, the
second third of previous analysis frame and the final third
of the two previous analysis frames. After 84 samples,
when one of the three frames is completed, the
relationship of the three analyzed frames rotates
cyclically.

An algorithm that allows optimal hardware
implementation of frame separation and overlapping was
developed. The algorithm operates in the next manner: In
order to obtain the frames, samples after pre-emphasis are
segmented in blocks j=1...T, where T is the number of
blocks that could be formed from the voice signal. Figure
2 shows the blocks segmentation. Each block j has 84
samples, with non-overlap between blocks. Three
successive blocks (252 samples) compose each frame

Figure 2. Overlap between frames.

An internal dual-port RAM memory, that allows read/write
parallel operations, was used for temporal storage of 252
samples. This memory was divided in three memory segments
Mi, i=0...2, where each segment has 84 samples.

Figure 3 shows frame separation operation. Each
new block j begins to be stored in the segment memory
Mi where the samples of the two previous blocks are
stored. Each block is multiplied by the correspondent
values of Hamming window, w(n), n=0...251, before

storing in memory. Finally, the frame multiplied by
Hamming window is stored in an output register.

In each time period, only 28 samples of the new
block are stored. It represents the third part of the 84
samples of the block. In parallel, the content of the
segment memory that has the samples of the last block is
read. In the next time period, the second third of the new
block is read (28 samples) and the content of the next to
the last block is also read. In the next period time, the
final 28 samples of the new block are stored. At the same
time, the segment memory that corresponds to the last
block is also read.

Figure 3. Frame separation using voice signal blocks.

2.3 Windowing Function

The Hamming window has the equation [6]:
1Nsn0,

1Ns
n2cos46,054,0)n(w −≤≤

−
⋅

⋅−=
π

 (3)
where Ns is the samples number of each window and

n is the sample being evaluated. The window size is 252
samples (22ms aprox.), in order to simplify the Hamming
window and the frame separation implementation. In
figure 4, the windowing datapath join with the frame
division block is shown.

A ROM memory stores the first 126 values of
Hamming window (n= 0...125), corresponding to the first
two quads of the cosine function. The window values for
other points are calculated using cosine function
periodicity properties. An up/down binary counter makes
hamming memory addressing.

Figure 4. Datapaths of windowing and frame

division.

3. MEL-CEPSTRA PARAMETERS EXTRACTION
SYSTEM

In figure 5, a diagram for the mel-cepstra parameters
extraction is shown. First, spectral energy is computed for
windowed sequential frame, using a FFT processor
[2].After this, the energy in each of the 27 channels of a
triangular bandpass filters set is calculated. Finally, the
discrete cosine transform (DCT) of the log energy is
computed.

Figure 5. Extraction of Mel-cepstra parameters

In figure 6, hardware for triangular filters function is
shown. The triangular filters values are stored in a ROM.
A three-stage pipeline is used. The outputs of this bank
are 27 energy values.
 A logarithm processor using the CORDIC algorithm [5]
was implemented in order to obtain the log energy value
required for this system. Figure 7 shows the logarithm
processor implementation, formed by a scaling circuit, a
hardware implementation of the CORDIC algorithm and a
control unit. The logarithm processor uses 20 clock pulses
for the calculus of a logarithm value.

Figure 6. Triangular filters architecture.

Figure 7. Logarithm processor.

The outputs of the triangular filters (Filters_Value signal)
are scaled in order to obtain numbers between 0,5 and 1
that allows the calculus of the CORDIC algorithm for
logarithm function. The radix obtained by the scaling is
used to get the final result of the logarithm operation.

A DCT pipelined memory optimized algorithm [6]
was also implemented. In figure 8, the DCT architecture
is shown. A ROM stores cosine values for the DCT
calculus. A three stages pipeline was used.

Figure 8. DCT architecture.

4. VECTOR QUANTIZATION

The vector quantization stage (which makes the link
between the Mel-Cepstra extraction block and the Viterbi
processor) was designed too.
The codebook size is 64. Each vector has 27 mel-cepstra
parameters. Figure 9 shows the vector quantization
datapath. It uses a RAM memory for temporary storage of
the mel-cepstra parameters. A ROM has the centroids
obtained after training. Training is made offline.

5. VITERBI PROCESSOR

A Viterbi decoder for speech recognition was also
implemented [7]. The goal was the use in left-right
Hidden Markov models.
In figure 10, the datapath for the Viterbi processor is
shown. The addressing circuit for the Viterbi processor is
shown in figure 11.

Figure 9. Vector Quantization datapath.

Figure 10. Viterbi processor datapath.

Figure 11. Addressing circuit for Viterbi processor.

6. EXPERIMENTAL RESULTS

The functions explained above were implemented using
the Maxplus II tool, in order to use them with FPGAs.
They implementation in Matlab and in C was also made,
in order to compare behavioral simulations with hardware
results. Tests were made with an isolated word small
vocabulary for industrial control of elevators.
In table 1, a comparison between the implementation
using speech recognition in hardware vs. software
implementation is shown.

 HW SW
Stage Time(µs) Time(µs)

Parameter Extraction and
Pre-processing

2085 110000

Vector Quantization 173 440000

Recognition with Viterbi
decoding

3,75 50000

Table 1. Hardware vs. software results.

8. CONCLUSIONS
The speed characteristics of a dedicated circuit, the
physical space, the flexibility of the VHDL description
and the potential of FPGA systems make this design
usable for the development of new applications. Hardware
description language specification opens the possibility to
synthesize such systems in different circuit technologies,
generating application specific integrated circuits. A
system with these features could be used in the
experimentation of different stages of speech recognition
technology, reducing the physical space used by speech
recognition software running in a PC.
The system proposed would be used in problems that
require a small vocabulary and a limited speaker number.

Many optimizations were made, to obtain a low latency
and a low use of memory.

9. REFERENCES
[1] Brown, M. K. et. al. "The DTWP: An LPC-Based Dynamic
Time-Warping Processor for Isolated Word Recognition". AT&T
Bell Laboratories Technical Journal, v.63 n.3: 441-457, 1984.

[2] Lapsley, P. et. al. DSP Processor Fundamentals:
architectures and features. New Jersey: IEEE Press, 1997. 210p.

[3] Gómez-Cipriano, J. L. et. al. Functional Blocks for Speech
Recognition Systems. In: Symposium on Integrated Circuits,
SBCCI, 2001

[4] Vergin, R.; O'Shaughnessy, D. Generalized Mel Frequency
Cepstral Coefficients for Large-Vocabulary Speaker-Independent
Continuous-Speech Recognition. IEEE Transactions on Speech,
and Audio Processing, v.7, n.5, p. 525-532, 1999.

[5] Andraka, R. "A survey of CORDIC algorithms for FPGA
based computers". In: Proc. of the 1998 ACM/SIGDA Sixth
International Symposium on FPGAS. 1998

[6] Aggarwal, G.; Gajski, D. Exploring DCT Implementations.
Tech. report, University of California, Irvine. 1998

[7]Gómez-Cipriano, J. L. et. al. FPGA Hardware for speech
Recognition Using Hidden Markov Models, ICSLP, 2002.

