
Design of an ASIC CORE for data encryption and decryption
Using the NIST Advanced Encryption Standard

Víctor Hugo Cordero Calle, Carlos Silva Cárdenas

Email cordero.vh@pucp.edu.pe, csilva@pucp.edu.pe
Microelectronics Group – Pontificia Universidad Católica del Perú

Telf: (511) 4602870 anexo 304 Ext. 209.

ABSTRACT

The ‘National Institute of Standard and Technologies’ (NIST) defined on the ‘Federal Information Processing Standards’
(FIPS) Publication #197 the current ‘Advanced Encryption Standard’ (AES) to be used for commercial applications. This
work focuses on the ‘Application Specific Integrated Circuit’ (ASIC) implementation, starting in a fully unrolled Verilog
description, optimized up to gate level of its critical modules in order to obtain maximum performance while keeping the
architecture usable for both of the processes (encryption and decryption processes). This work also covers a full custom
design analysis of the encrypt / decrypt module in order to get the expected performance in the 0.12 um CMOS process
technology.

RESUMEN

El Instituto Nacional de Estándares y Tecnología de los EE.UU. (NIST) definió en la publicación federal de estándares
de manejo de información #197 (FIPS 197) el actual Estándar de encriptación Avanzado (AES) para ser usado en
aplicaciones comerciales. El presente trabajo se centra en la implementación de este estándar en un diseño ASIC (Circuito
Integrado de Aplicación Especifica), empezando con la descripción desenvuelta del algoritmo en Verilog, y optimizada en
código a nivel de puestas lógicas y en paralelismo para obtener así un máximo rendimiento mientras se mantiene un uso
bajo de puertas dentro de una arquitectura utilizable para realizar el proceso de encriptación y desencriptación en un solo
modulo. En este documento también se añade un análisis de implementación en full custom para el proceso mas critico (el
modulo de encriptación y desencriptación) para obtener su performance estimada en tecnología de proceso CMOS de 0.12
um.

Design of an ASIC CORE for data encryption and decryption
Using the NIST Advanced Encryption Standard

Victor Hugo Cordero Calle, Carlos Silva Cárdenas

Email cordero.vh@pucp.edu.pe, csilva@pucp.edu.pe
Microelectronics Group – Pontificia Universidad Católica del Perú

Telf: (511) 4370828 anexo 304 Ext. 209.

ABSTRACT

The ‘National Institute of Standard and Technologies’
(NIST) defined on the ‘Federal Information Processing
Standards’ (FIPS) Publication #197 the current ‘Advanced
Encryption Standard’ (AES) to be used for commercial
applications. This work focuses on the ‘Application
Specific Integrated Circuit’ (ASIC) implementation,
starting in a fully unrolled Verilog description, optimized
up to gate level of its critical modules in order to obtain
maximum performance while keeping the architecture
usable for both of the processes (encryption and
decryption processes). This work also covers a full custom
design analysis of the encrypt / decrypt module in order to
get the expected performance in the 0.12 um CMOS
process technology.

1. INTRODUCTION

On recent years there has been an increasing interest on
the encryption technologies, as a result several encryption
algorithms have been developed to satisfy client needs, but
the proliferation of them made the National Institute of
Technology ask for proposals for the Advanced
Encryption Standard. The winner of them was the Rijndael
algorithm due to its high performance, security, and
minimum area usage when implemented in an ASIC or in
a FPGA.
Up to this moment, most of the high performance AES
implementations have been developed for FPGA. As a
result, there have been few papers written where an ASIC
implementation of the AES is discussed.
The purpose of this work is to discuss an architecture
specifically thought for using the best of the capabilities
that the ASIC design allows, where a minimum gate count
is highly appreciated from the very beginning at the HDL
design. The parallelism and pipelining of the modules
have been taken into account too, in order to reach the
highest performance possible.
The HDL design has been written entirely on Verilog,
using as a compiler and simulator the Synapticad

Verilogger[12] where the entire functionality of this
architecture has been tested and simulated; the appropriate
order of the outputs and signals from the different modules
have been tested using this tool too.
For the precise timing, given in the last part of this paper,
each of the modules have been designed in accordance to
the Verilog description in a full custom ASIC tool
(Microwind [11]) setting it for the 0.12um CMOS process
technology.
This ASIC core can be used into broadband, wireless or
multimedia systems. The application of an ASIC AES core
could be Video phones, PDA, point-to-point wireless,
satellite communications, surveillance systems, network
appliances, virtual private networks (VPN), voice services,
etc, and everywhere an embedded encryption procedure
could prove to be useful.
The AES algorithm is fully explained in the FIPS 197 [1],
the mathematics about Galois Field (GF 28) is explained
also in [1], therefore, its lecture is a requirement in order
to understand the architecture. Since we have to be brief in
this paper, no explanations about how the standard work
will be made here. Further information about the AES
algorithm can be found in [2], [7] and [9].
This work will focus on the fastest possible
implementation of this algorithm for an ASIC CORE
keeping the gate count reasonable. The following core is
focused on the 128-bit-key encryption, but the same
architecture can be used for the 192-bit encryption.
There exists four security schemes for data encryption [4]
which are cipher block chaining (CBC) mode, cipher
feedback (CFB), output feedback (OFB) and the straight
forward electronic code book (ECB). In the first three, the
output data has to be feedback for the next encryption,
therefore, there it wont be possible to use any pipelining
(section 2.11). This AES Core will not use round
pipelining, as a result, it could be modified to work in the
CBC, CFB, and OFB modes if required.

2. ARCHITECTURE

On the following sub-sections it will be explained in
details this high performance architecture, which has been
written in Verilog for a soft core solution (where is up to
the synthesis tools, Cadence for example, to do the
transformations into CMOS transistors)
Section 3 shows the full custom implementation of the
critical module (the encrypt/decrypt module), in order to
obtain a mixed solution (semi-custom design). Since there
exists a layout for the full custom implementation (based
on the verilog thought architecture) performance results
will also be presented.
The possible bit-through-output improvements to this
architecture will be highlighted on section 2.11, which are
basically of pipelining,

2.1. Encrypt Decrypt Core
The selection of the system current work state is controlled
through the following lines:
<Data/Key> (t selects whether the input is Data or the
Cipher Key
<WR> Write line, it has to be positive edge activated after
the data or cipher key are on the input bus;
<RD> Read Line, it is used to retrieve a 32-bit word from
the core.
 <Encrypt/Decrypt> Chooses the operation mode of the
chip, it can be set to encrypt or to decrypt.
<Clr> This line is used if it is desired a full reset of the
current data being encrypted or decrypted.
<Clk> Clock is the master clock for the whole AES
CORE.
<KE_ready> This line indicates to the external hardware
that the key expansion is complete.
<Data_ready> This line indicates that the encryption or
decryption of a 128-bit work have been completed.

Encript
Decript

Unit

Key
Scheduler

Reg
128 bits

 to
32 bits

Control
Unit

Reg
32 bits

to
128 bits

Ctrl Mux 1
Ctrl_regloop128
Ctrl_mux_lastround
Ctrl_mux_firstround
Ctrl_mux_enc_dec_select
Ctrl_regdataout128

Data or Key 128 bits

Subkey 128 bits

Data 128 bits

Read_Subkey

Round Number (4bits)

Key_Expansion_Init

Key_Expansion_Clk

Encript / Decript

Data / Key
32 bits
Input

Data
32 bits
Output

Data / Key

WR

KE_ready
Data_ready

Clr
Clk

Enc / Dec

Clk_reg_load
Clk_reg_out
Clr

Complete System AES

RD

Figure 1: Modularized

Architecture of the AES CORE

As shown in (fig 1), the architecture consists of four major
units, which are:

Control Unit It handles the main state machine for the
AES core, this unit controls the internal lines of the other
units in order to complete the encryption, decryption or
key expansion processes
Encrypt / Decrypt Unit This unit does the encrypt and
decrypt rounds in the same module, utilizing to its best its
internal multiplexers and registers.
Key Scheduler This unit will receive the cipher key at the
beginning of the encrypt / decrypt process, the key is
expanded only once and the resultant sub-keys are stored
in a 11x128 bits memory. After the expansion, this module
behaves as a memory, providing the 128-bit sub-key
required for each of the rounds of the encrypt or the
decrypt processes.
Input / Output registries The input registry is controlled by
the rising edge of the WR line, after 4 edges, a 128-bit
word is passed from the register to the internal 128-bit bus
of the AES CORE. The output registry is controlled by the
RD line. Right after a complete encryption or decryption
process is finished the full 128-bit word will be released to
the output bus in 32-bit words synchronized by four RD
rising edges.

It is important to highlight that these independent set of
input/output registers by sub-words of 32 bits wont have a
penalty in the overall performance of the core. The loading
and unloading of data from the external bus is done in
parallel to the encryption / decryption process (the
pipeline is formed by the input registry, the output registry
and the enc/dec module), making the critical time, the time
it takes to do the full 10 rounds in the Enc / Dec module.
This is shown in (table 1).
T0 T1 T2 T3
Load 32->128

Enc/Dec Process
Unload 128->32

Load 32->128
Enc/Dec Process
Load 32->128

Unload 128->32

Enc/Dec Process
Load 32->128

Table 1: Pipelining in the AES CORE

To summarize the operation of the AES CORE (fig 1), it
starts when the 128-cipher key is expanded in the Key
scheduler and stored in its memory. Then, the core is
ready to receive any amount of 128 bits blocks of data (in
groups of 32 bits) to encrypt or decrypt. In order to write
new data, the data line should be set, then, after each edge
of WR, 32 bits will be loaded in the input registry. When a
block of 128 is ready, the encryption process begins. The
Control Unit will set or clear the appropriate lines for the
10 rounds process in the encrypt module; the required sub-
key for each round, will be given by the Key Scheduler.
Right after the 10th round process inside the enc/dec unit
is finished, the 128-bit crypted / decrypted word is handled

to the Output Registry (128 -> 32 bits). By this time, the
enc/dec unit is ready to process another 128-bit word.

2.2. Encrypt / Decrypt Module
The encrypt/decrypt module (fig. 2) is the critical module
of the system, because the through-output of the CORE
relies on how fast this block can handle the data.
Therefore, every component inside is combinatorial and
capable to process a 128-bit word. There is only one
registry in the loop, which is required to hold the data for
each round process. One important feature here is that the
Decrypt process is arranged in a way that it can use the
very same 128-bit internal buses, multiplexers, registries
and add-sub-key (128-bit xor stage) modules. Doing so,
significant silicon area is saved, in comparison of a
scheme with separate encrypt and decrypt units. This is
possible because the equivalent inverse cipher[1] was
used, so that the same arithmetic structure and sequence is
used for the encryption and the decryption processes. The
extra cost is the addition of an inverse-mix-column block
in the key-scheduler module. The multiplexers chosen here
are 128x2, which have only a 3-gate delay per couple of
lines to be multiplexed.

InvShift InvSub InvMix

Shift Sub Mix

Ctrl_mux1

Ctrl_regloop128

Ctrl_mux_lastround

Ctrl_mux_firstround

Ctrl_mux_enc_dec_select

Ctrl_regdataout128

DataInput
128 bits

SubKey
128 bits

DataOutput
128 bits

Reg
128

Reg
128

Figure 2: Encrypt / Decrypt

Module

A couple of 128-bit buses are taken right after the
SubBytes and InverseSubBytes modules, due to the last
round process, which doesn’t require the MixColumn nor
the InverseMixColumn. Another 128-bit bus is taken right
after the 128-bit loop register, because it is required for
the first round process in the AES.
With this architecture, it is only required one of each
module (InvShift, InvSub, InvMix, Shift, Sub, MixColum
and Addroundkey) for the encrypt/decrypt processes. The
penalty is just the delay and the area of the muxes, that is
just of 3 gates delay per mux, significantly less costly in
area than to implement any of the modules again (specially
the Look-up-Tables)

2.3. Parallel process in the encryption
In this architecture, all of the processes are performed with
an internal bus of 128-bit. The ShiftRow, SubBytes and

MixColumn processes shown in (fig. 2) as blocks are
detailed in (fig. 3).
The Input to the process is a 128-bit word, the matrix array
proposed in the AES standard is unrolled as a linear vector
of 8-bit elements, with all of the bytes being processed in
parallel.
The first of the operations (ShiftRow) is realized by the
rearrangement of the input bus (In a CMOS
implementation there won’t be transistors used, in
consequence its delay will be almost zero).
The second operation is the SubBytes operation, which is
a non-linear byte substitution, the optimal way to do this
transformation is to pre-calculate the results for each input
byte, and store the results of this transformation in a fast
hard-wired Look up Table. This 8-bit input, 8-bit output
table is named SBOX.
The third process is the Mix Column, which has been
optimized for minimum gate delay, and optimums cmos
implementation (this will be detailed in section 2.5).

SBOX_0

SBOX_5

SBOX_10

SBOX_15

SBOX_4

SBOX_9

SBOX_14

SBOX_3

SBOX_8

SBOX_13

SBOX_2

SBOX_7

SBOX_12

SBOX_1

SBOX_6

SBOX_11

Mix
one_Column

0

Mix
one_Column

1

Mix
one_Column

2

Mix
one_Column

3

S0

S1

S2

S3

S4

S5

S6

S7

S8

S10

S11

S12

S13

S14

S15

S9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D10

D11

D12

D13

D14

D15

D9

ShiftColumn SubBytes MixColumn

Shifter
and

Sboxer Matrix

Mix
 Matrix

Input128bits
Mixed_Sboxed_
Shifted_128bits

Input
128bits

Mixed_
Sboxed_
Shifted_
128bits

Figure 3: Inside View of the parallelism

in the encrypt process

2.4. SubBytes Look-up-Table (S-BOX)
The SubByte is a hard-wired Look-up-Table that has been
written in Verilog as a decoder of 256 positions pointing
to 8-bit elements.
There are 16 S-BOX tables in the encrypt module. These
blocks occupy most of the area in the CORE.
Nevertheless, this is the best way to get the fastest
encryption / decryption possible speed. The other solution
would have been to perform the slow complex matrix
transformation.

Look Up Table 256 x 8

Input8 bits

Output 8 bits

SBOX
Input8 bits Output 8 bits

.

.

.

255

0

Figure 4: Sub Bytes module (S-BOX)

For the encrypt process.

2.5. Mix Column Module
The mix column process (fig. 5) has been carefully
developed to have the minimum possible delay. The full
mix column process has just the delay of one X2 galois
field (GF 28) multiplication (the math of Galois Field GF
28 is explained in [1]), a two input xor, and a four input
xor which can be designed as a complex CMOS function
of multiple inputs (instead of the usual AND, OR array
implementation). The mix column gate delays are
explained in section 3.2 .

X 2J0

X 2J1

X 2J2

X 2J3

S0

S1

S2

S3

Mix_one_Column

WordInput 32bits WordOutput 32bits
Mixed in Column

Byte Input
0

Bytemixed
0

Bytemixed
1

Bytemixed
2

Bytemixed
3

Byte Input
1

Byte Input
2

Byte Input
3

Figure 5: Mix-Column module

For the encryption Process

2.6. Multiplier per 2 in Galois Field 28
The multiplier per two in the Galois field with module
‘B00011011 (fig. 6) is the distinctive operation in the AES
[1], all of the multiplications can be arranged to be a group
of continuous X2 multiplications. On this design, the X2
delay is equal to a XOR gate delay.

b7

b7

b6

b5

b4

b3

b2

b1

b0

b6

b5

b4

b3

b2

b1

b0

0

0 0 0 1 1 0 1 1

ByteInput

Byteoutput
X2 en Gf 2 ^8 mod

'H_1B

X 2
ByteInput

Byteoutput
X 2 en Gf 2 ^8 mod 'H_1B

Module byte in AES

Figure 6: Multiplier per 2 module ‘B0001_1011

In the Galois Field 2^8

2.7. Parallel process in the decryption
The equivalent unrolled version of the inverse cipher (fig.
7) does the decrypt process very similar to the encrypt
process. As with the encrypt process the hard-wired
Inverse shift stage so it wont give us significant delays,
next, 16 Inverse Sboxes receive the sixteen 8-bit words,
finally, four inverse column modules receive four 32-bit
words.

Inverse Mix
one_Column

0

Inverse Mix
one_Column

1

Inverse Mix
one_Column

2

Inverse Mix
one_Column

3

S0

S1

S2

S3

S4

S5

S6

S7

S8

S10

S11

S12

S13

S14

S15

S9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D10

D11

D12

D13

D14

D15

D9

InvShift
Column InvSubBytes InvMixColumn

InvShifter
and

InvSboxer Matrix

InvMix
 Matrix

Input128bits
InvMixed_InvSboxed_

InvShifted_128bits

Input
128bits

InvMixed_
InvSboxed_
InvShifted_

128bits

INV_SBOX_0

INV_SBOX_13

INV_SBOX_10

INV_SBOX_7

INV_SBOX_4

INV_SBOX_1

INV_SBOX_14

INV_SBOX_11

INV_SBOX_8

INV_SBOX_5

INV_SBOX_2

INV_SBOX_15

INV_SBOX_12

INV_SBOX_9

INV_SBOX_6

INV_SBOX_3

Figure 7: Inside View of the parallelism

in the decrypt process
2.8. Inverse Sbox for the decrypt process
The AES defines a inverse sub-byte transformation which
can be rearranged as a look-up-table (named inverse-
SBOX in (fig.8)) with the exact same considerations as
the SBOX but with different coefficients stored inside.

Look Up Table 256 x 8

Input8 bits

Output 8 bits

Inverse Sbox
Input8 bits Output 8 bits

.

.

.

255

0

Figure 8: Inverse Sub Bytes module (Inv-S-BOX)

For the decrypt process.

2.9. Inverse Mix Column
The main difference of the decrypt process from the
encrypt process is the inverse mix column. The inverse
mix column (fig. 9) will have a longer path to cover,
because the process requires multiplications with higher
coefficients than the mix column process. To minimize
this effect, and to reduce the overall gate count, a
multiproduct module was developed, this way, for the 16
galois field products required in the invMixColumn, only
4 of this kind of multipliers are utilized.

Mult GF_2^8

J0 (XE)
J0 (X9)
J0 (Xd)
J0 (Xb)

Mult GF_2^8

J1 (XE)
J1 (X9)
J1 (Xd)
J1 (Xb)

Mult GF_2^8

J2 (XE)
J2 (X9)
J2 (Xd)
J2 (Xb)

Mult GF_2^8

J3 (XE)
J3 (X9)
J3 (Xd)
J3 (Xb)

J0

J3

J2

J1

S0

S1

S2

S3

Byte Input
0

Byte Input
1

Byte Input
2

Byte Input
3

Byte
InvMixed 0

Byte
InvMixed 1

Byte
InvMixed 2

Byte
InvMixed 3

Inv_Mix_one_Column

WordInput 32bits WordOutput 32bits
Inv Mixed in Column

Figure 9: Inverse-Mix-Column module

For the decryption Process

2.10. Multiproduct Multiplier in Galois Field 28
This module (fig. 10) was optimized to have the closest
performance to its equivalent of the encrypt process, the
product operation has been rearranged to be three X2
product operation, that recursively use its internal results
in order to get all of the multiplications required for the
inv mix column. By doing so, the only extra delay added
was of just two X2 delays, which translates to an
additional two xor gates delay. This way the decryption
process will be almost as fast as the encryption process.

X 2 X 2 X 2A0

A0 x 'hE

A0 x 'h9

A0 x 'hD

A0 x 'hB

A0 x8A0 x4A0 x2

Mult GF_2^8
InvCipher

ByteInput
Byte x 'hE mod 'h1b

Byte x 'h9 mod 'h1b

Byte x 'hD mod 'h1b

Byte x 'hB mod 'h1b

ByteInput

ByteOutput (x 'hE)

ByteOutput (x 'h9)

ByteOutput (x 'hD)

ByteOutput (x 'hB)

Figure 10: Multipurpose multiplier module

in the Galois Field 2^8 for the decrypt process

In sum, by focusing only on the particulars GF 28 products
required in the AES process for the Inv-mix-column, a
lower gate delay than the one in [10] was reached. Our
Inv-mix-column module’s delay is just of 5 xor gate delay.
2.11 Some Improvements
The possible improvements [3] on round-based encryption
algorithms are inner-round pipelining (fig 11_a) and outer-
round pipelining (fig 11_b).

.

Register 1

Stage 1

Register 2

Stage 2

Register 3

Stage 3

Register 4

Stage 4

(A)

128-bit input

Register 2

Complete Round 2

Register 1

Complete Round 1

Register 10

Complete Round 10

128-bit input

(B)
Figure 11: Pipelining Schemes

In the inner round pipelining (fig11-a) the purpose is to
divide the round process in separate stages, with a register
between each stage. This way if we could be able to
separate the one round in four stages of approximately the
same delay, we would be able to encrypt four 128-bit data
block in a 10+3 rounds because of the pipelining. The
main trouble would be that it would require an architecture
where each of the processes were performed exactly one
after the other, so, it would be necessary to implement
extra modules to perform the first and the last round which
performs differently than the 2nd through 9th round (16 S-
Box and 16 inv-S-Box more). Inner pipelining would
improve bit-through-output performance by at least a
factor of four.

The other possible improvement would be to serialize
multiple complete round (outer round pipelining), putting
register between them. This way if we had the ten
complete rounds serialized the performance would
increase by ten. The problem here would be the excessive
area used and the massive amount of lines the control unit
would have to handle.
Note that the pipelined version will only work for the
Electronic Code Book security scheme, were an input 128-
bit word will always transform in the same 128-bit
ciphered word.
The USA National Security Agency implemented de AES
in ASIC with the outer round pipelining architecture, their
performance results can be read in [6]. Their area usage
was huge (471,996,329 um; 7,130,697 transistors for their
5337.78 mbps version).

3. RESULTS

All of the architecture modules have been written in
verilog, compiled and simulated thoroughly in Synapticad
Veriloger. This tool helped to check if the processes were
being performed in the appropriate order and to check if
whether the modules passed their data on time.
The results presented here will come from the full custom
design tool Insa Toulouse Microwind v2.5. On this tool
was analyzed the critical path of each separate module of
the encrypt/decrypt process (they just differ on the mix-
column process). Because of the pipelining, the critical
module that will determine the theoretical performance of
the AES CORE will be the encrypt/decrypt module. The
key expansion was not analyzed because this process is
done only once in the whole operation of the AES CORE,
After the key is expanded, is stored in a memory and read
directly from there, which has about the same delay as a
SBOX-table look up. The performance of the control unit
wasn’t analyzed either, that is because, this unit is
composed of a large state machine which clearly works
faster than the enc/dec module.
All of the full custom modules analyses were designed for
a CMOS 0.12 um technology.

3.1. Look up table delay
The full-custom look up table(fig. 13) is implemented as
two decoders of 4 inputs, one of them selects the column
and the other the row of the table. Once selected a cell in
the table, eight couples of C-switches releases a hard-
wired 8-bit word. This implementation gives a delay (fig
12) of 0.160 ns with a minimum period of the input word
of 0.5ns. This can be seen in figure 11, where the fetched
word passes from ‘h00 to ‘h11, giving the appropriate
output accordingly to AES[1] (‘h63 and ‘h82).

Figure 12: Look up table time diagram, passing

From ‘H00 to ‘H11 in its input.

F
igure 13: Part of the look up table cmos

layout in Microwind

3.2. Mix Column operation delay
As shown in (fig 5), the mix column critical path will be
the delay of a X2 operation followed by a xor (each input
of 8 bits xored bit by bit) and a four input xor (each input
of 8 bits). In the worst case scenario for the 4 input xor, its
delay (fig.14) is of 0.125ns, and for the 2 input xor is of
0.50 ns. When all of the blocks were put together, the
delay grew up to 0.520ns, because a automatic synthesis
(fig.15) tool was used in order to be able to manage all of
the data lines if a mixcolumn module. Because of the
horizontal expansion of the cmos transistors of this tool
the delay incremented higher than the adition of the simple
modules’ delay.

Figure 14: Maximum delay for the mix column

Figure 15: Cmos layout of the mix Column by
Automatic cmos synthesis

3.3. Multiplexers 128x2 delay
The multiplexers chosen for this AES CORE, were 128x2
muxes, this is because its minimum gate delay in
comparison to use a 128x8 mux. By arranging a set of
128x2 the extra expenditure will be only of metal path.
A multiplexer 128x2 can be seen as a set of 128 parallel
couples of c-switches controlled by the same selector
(fig.17) In consequence it is only required to analyze one
of this. The delay (fig.16) of this kind of mux is only
0.017ns.

Figure 16: Maximum delay of the multiplexer

Figure 17: Layout of the basic build cell of

a mux by c-switches
3.4. Register delay
Similarly to the multiplexer the 128 bit register is
composed of 128 parallel d-latches (fig.19) with the same
clock and with the same delay (fig.18). The computed
delay is of 0.06ns

Figure 18: Delay of the fully customized cmos latch

Figure 19: Cmos layout of the basic

Latch for the 128-bit registry

3.5. Conclusions
From the numbers thrown above, the theoretical maximum
speed for this architecture comes from the addition of the
propagation delays, multiplied by a factor due to extra
metal paths to connect the modules (1.5) and another to
ensure that the data is stable enough (2).

Total numerical delay for a simple round process: 1.291ns
Max through output considering 10 rounds for 128-cipher
key and 0.12 um cmos technology:
 smegabitsbits

roundsns
/3304128*

2*5.1*10*291.1
1 =

These results are in accordance with the through output
reached by the microelectronics group of the University of
California [4] & [4_A], who reached a data transfer rate of
2290megabits/s on a 0.18 um cmos technology integrated
circuit using 173k gates.
More comparative results can be found in [5] where an un-
pipelined implementation on 0.35um CMOS was made,
their through-output was of 1.95gbps using 613k gates.

4. FUTURE WORK

The present project is the thesis work advances for
obtaining the electronic degree title of the author, the next
stage of this work will the to make the whole encrypt /
decrypt module in a full custom layout. As it was shown
here, this critical process has to be carefully regarded.
The other modules like the control unit, and the key
scheduler will be synthesized in the Cadence software for
its cmos layout, the actual code written in Verilog will be
optimized and tested thoroughly in Synapticad and once it
reaches its best performance it will be passed to Cadence.
This project has also been presented for financing to the
Academic Research Bureau of the Catholic University of
Peru.
In a second version of this architecture, it is planned to use
inner and outer pipelining, this way we will get an AES
core that works only in the ECB mode but with a really
high through-output.

5. REFERENCES
[1] Specification for the Advanced Encryption Standard
(AES) Federal Information Processing Standards
Publication 197 http://csrc.nist.gov/encryption/aes/frn-
fips197.pdf (nov - 2001)
[2] NIST. Advanced Encryption Standard (AES). NIST
homepage about AES
http://csrc.nist.gov/encryption/aes
[3] Gaj, Kris e Chodowiec, Vincent “Comparison of the
hardware performance of the AES candidates using
reconfigurable hardware”.
[4] Patrick. Schaumont, Henry Kuo, Ingrid Verbauwhede.
Unlocking the Design Secrets if a 2.29 Gb/s Rijndael
Processor
[4_A] Patrick. Schaumont, Henry Kuo, Ingrid
Verbauwhede. A 2.29 Gbits/sec, 56mw, Non-pipelined
Rijndael Aes Encryption IC in a 1.8v, 0.18 um CMOS
technology

[5] T. Ichikawa, T. Kasuya, M. Matsui, “Hardware
Evaluationof the AES Finalists,” in AES3: the third
Advanced Encryption Standard Candidate conference,
New-York,April 13-14, 2000.
[6] Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms
http://csrc.nist.gov/encryption/aes/round2/NSA-
AESfinalreport.pdf
[7] Rijndael Homepage by: J. Daemen and V. Rijmen
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/index
.html
[8] The rijndael fan page: implementations:
http://rijndael.com/implementations.html
[9] The advance Rijndael algorithm by John Savard
http://home.ecn.ab.ca/~jsavard/crypto/co040801.htm
[10] M.H. Jing, Y.H. Chen, Y.T. Chang, C.H. Hsu “The
Design of a Fast Inverse Module in AES” paper IEEE
[11] MicroWind2 cmos layout design tool from l'Institut
National des Sciences Appliquées de Toulouse
http://intrage.insa-tlse.fr/~etienne/Microwind
[12] Synapticad Verilogger (Verilog simulation environment)
from SYNAPTICAD INC www.syncad.com/

