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ABSTRACT 
 
The ‘National Institute of Standard and Technologies’ (NIST) defined on the ‘Federal Information Processing Standards’ 
(FIPS) Publication #197 the current ‘Advanced Encryption Standard’ (AES) to be used for commercial applications. This 
work focuses on the ‘Application Specific Integrated Circuit’ (ASIC) implementation, starting in a fully unrolled Verilog 
description, optimized up to gate level of its critical modules in order to obtain maximum performance while keeping the 
architecture usable for both of the processes (encryption and decryption processes). This work also covers a full custom 
design analysis of the encrypt / decrypt module in order to get the expected performance in the 0.12 um CMOS process 
technology. 
 
 

RESUMEN 
 

El Instituto Nacional de Estándares y Tecnología de los EE.UU. (NIST) definió en la publicación federal de estándares 
de manejo de información #197 (FIPS 197) el actual Estándar de encriptación Avanzado (AES) para ser usado en 
aplicaciones comerciales. El presente trabajo se centra en la implementación de este estándar en un diseño ASIC (Circuito 
Integrado de Aplicación Especifica), empezando con la descripción desenvuelta del algoritmo en Verilog, y optimizada en 
código a nivel de puestas lógicas y en paralelismo para obtener así un máximo rendimiento mientras se mantiene un uso 
bajo de puertas dentro de una arquitectura utilizable para realizar el proceso de encriptación y desencriptación en un solo 
modulo. En este documento también se añade un análisis de implementación en full custom para el proceso mas critico ( el 
modulo de encriptación y desencriptación ) para obtener su performance estimada en tecnología de proceso CMOS de 0.12 
um. 
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ABSTRACT 
 
The ‘National Institute of Standard and Technologies’ 
(NIST) defined on the ‘Federal Information Processing 
Standards’ (FIPS) Publication #197 the current ‘Advanced 
Encryption Standard’ (AES) to be used for commercial 
applications. This work focuses on the ‘Application 
Specific Integrated Circuit’ (ASIC) implementation, 
starting in a fully unrolled Verilog description, optimized 
up to gate level of its critical modules in order to obtain 
maximum performance while keeping the architecture 
usable for both of the processes (encryption and 
decryption processes). This work also covers a full custom 
design analysis of the encrypt / decrypt module in order to 
get the expected performance in the 0.12 um CMOS 
process technology.  
 

1. INTRODUCTION 
 

On recent years there has been an increasing interest on 
the encryption technologies, as a result several encryption 
algorithms have been developed to satisfy client needs, but 
the proliferation of them made the National Institute of 
Technology ask for proposals for the Advanced 
Encryption Standard. The winner of them was the Rijndael 
algorithm due to its high performance, security, and 
minimum area usage when implemented in an ASIC or in 
a FPGA. 
Up to this moment, most of the high performance AES 
implementations have been developed for FPGA. As a 
result, there have been few papers written where an ASIC 
implementation of the AES is discussed.  
The purpose of this work is to discuss an architecture 
specifically thought for using the best of the capabilities 
that the ASIC design allows, where a minimum gate count 
is highly appreciated from the very beginning at the HDL 
design.  The parallelism and pipelining of the modules 
have been taken into account too, in order to reach the 
highest performance possible. 
The HDL design has been written entirely on Verilog, 
using as a compiler and simulator the Synapticad 

Verilogger[12] where the entire functionality of this 
architecture has been tested and simulated; the appropriate 
order of the outputs and signals from the different modules 
have been tested using this tool too.  
For the precise timing, given in the last part of this paper, 
each of the modules have been designed in accordance to 
the Verilog description in a full custom ASIC tool 
(Microwind [11]) setting it for the 0.12um CMOS process 
technology. 
This ASIC core can be used into broadband, wireless or 
multimedia systems. The application of an ASIC AES core 
could be Video phones, PDA, point-to-point wireless, 
satellite communications, surveillance systems, network 
appliances, virtual private networks (VPN), voice services, 
etc, and everywhere an embedded encryption procedure 
could prove to be useful. 
The AES algorithm is fully explained in the FIPS 197 [1], 
the mathematics about Galois Field (GF 28) is explained 
also in [1], therefore, its lecture is a requirement in order 
to understand the architecture. Since we have to be brief in 
this paper, no explanations about how the standard work 
will be made here. Further information about the AES 
algorithm can be found in [2], [7] and [9]. 
This work will focus on the fastest possible 
implementation of this algorithm for an ASIC CORE 
keeping the gate count reasonable. The following core is 
focused on the 128-bit-key encryption, but the same 
architecture can be used for the 192-bit encryption. 
There exists four security schemes for data encryption [4] 
which are cipher block chaining (CBC) mode, cipher 
feedback (CFB), output feedback (OFB) and the straight 
forward electronic code book (ECB). In the first three, the 
output data has to be feedback for the next encryption, 
therefore, there it wont be possible to use any pipelining 
(section 2.11). This AES Core will not use round 
pipelining, as a result, it could be modified to work in the 
CBC, CFB, and OFB modes if required.  
 

2. ARCHITECTURE 
 



On the following sub-sections it will be explained in 
details this high performance architecture, which has been 
written in Verilog for a soft core solution (where is up to 
the synthesis tools, Cadence for example, to do the 
transformations into CMOS transistors) 
Section 3 shows the full custom implementation of the 
critical module (the encrypt/decrypt module),  in order to 
obtain a mixed solution (semi-custom design). Since there 
exists a layout for the full custom implementation (based 
on the verilog thought architecture) performance results 
will also be presented. 
The possible bit-through-output improvements to this 
architecture will be highlighted on section 2.11, which are 
basically of pipelining,  
 
2.1. Encrypt Decrypt Core 
The selection of the system current work state is controlled 
through the following lines:  
<Data/Key> (t selects whether the input is Data or the 
Cipher Key  
<WR> Write line, it has to be positive edge activated after 
the data or cipher key are on the input bus; 
<RD> Read Line, it is used to retrieve a 32-bit word from 
the core. 
 <Encrypt/Decrypt> Chooses the operation mode of the 
chip, it can be set to encrypt or to decrypt. 
<Clr> This line is used if it is desired a full reset of the 
current data being encrypted or decrypted. 
<Clk> Clock is the master clock for the whole AES 
CORE. 
<KE_ready> This line indicates to the external hardware 
that the key expansion is complete. 
<Data_ready> This line indicates that the encryption or 
decryption of a 128-bit work have been completed. 
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Figure 1: Modularized  

Architecture of the AES CORE 
 

As shown in (fig 1), the architecture consists of four major 
units, which are:  

Control Unit It handles the main state machine for the 
AES core, this unit controls the internal lines of the other 
units in order to complete the encryption, decryption or 
key expansion processes 
Encrypt / Decrypt Unit  This unit does the encrypt and 
decrypt rounds in the same module, utilizing to its best its 
internal multiplexers and registers. 
Key Scheduler This unit will receive the cipher key at the 
beginning of the encrypt / decrypt process, the key is 
expanded only once and the resultant sub-keys are stored 
in a 11x128 bits memory. After the expansion, this module 
behaves as a memory, providing the 128-bit sub-key 
required for each of the rounds of the encrypt or the 
decrypt processes. 
Input / Output registries The input registry is controlled by 
the rising edge of the WR line, after 4 edges, a 128-bit 
word is passed from the register to the internal 128-bit bus 
of the AES CORE. The output registry is controlled by the 
RD line. Right after a complete encryption or decryption 
process is finished the full 128-bit word will be released to 
the output bus in 32-bit words synchronized by four RD 
rising edges.  
 
It is important to highlight that these independent set of 
input/output registers by sub-words of 32 bits wont have a 
penalty in the overall performance of the core. The loading 
and unloading of data from the external bus is done in 
parallel to the encryption / decryption process (the 
pipeline is formed by the input registry, the output registry 
and the enc/dec module), making the critical time, the time 
it takes to do the full 10 rounds in the Enc / Dec module. 
This is shown in (table 1). 
T0 T1 T2 T3
Load 32->128

Enc/Dec Process
Unload 128->32

Load 32->128
Enc/Dec Process
Load 32->128

Unload 128->32

Enc/Dec Process
Load 32->128  

Table 1: Pipelining in the AES CORE 
 

To summarize the operation of the AES CORE (fig 1), it 
starts when the 128-cipher key is expanded in the Key 
scheduler and stored in its memory. Then, the core is 
ready to receive any amount of 128 bits blocks of data (in 
groups of 32 bits) to encrypt or decrypt. In order to write 
new data, the data line should be set, then, after each edge 
of WR, 32 bits will be loaded in the input registry. When a 
block of 128 is ready, the encryption process begins. The 
Control Unit will set or clear the appropriate lines for the 
10 rounds process in the encrypt module; the required sub-
key for each round, will be given  by the Key Scheduler. 
Right after the 10th round process inside the enc/dec unit 
is finished, the 128-bit crypted / decrypted word is handled 



to the Output Registry (128 -> 32 bits). By this time, the 
enc/dec unit is ready to process another 128-bit word. 
 
2.2. Encrypt / Decrypt Module 
The encrypt/decrypt module (fig. 2) is the critical module 
of the system, because the through-output of the CORE 
relies on how fast this block can handle the data. 
Therefore, every component inside is combinatorial and 
capable to process a 128-bit word. There is only one 
registry in the loop, which is required to hold the data for 
each round process. One important feature here is that the 
Decrypt process is arranged in a way that it can use the 
very same 128-bit internal buses, multiplexers, registries 
and add-sub-key (128-bit xor stage) modules. Doing so, 
significant silicon area is saved, in comparison of a 
scheme with separate encrypt and decrypt units. This is 
possible because the equivalent inverse cipher[1] was 
used, so that the same arithmetic structure and sequence is 
used for the encryption and the decryption processes. The 
extra cost is the addition of an inverse-mix-column block 
in the key-scheduler module. The multiplexers chosen here 
are 128x2, which have only a 3-gate delay per couple of 
lines to be multiplexed. 
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Figure 2: Encrypt / Decrypt 

Module 
 
A couple of 128-bit buses are taken right after the 
SubBytes and InverseSubBytes modules, due to the last 
round process, which doesn’t require the MixColumn nor 
the InverseMixColumn. Another 128-bit bus is taken right 
after the 128-bit loop register, because it is required for 
the first round process in the AES.  
With this architecture, it is only required one of each 
module (InvShift, InvSub, InvMix, Shift, Sub, MixColum 
and  Addroundkey) for the encrypt/decrypt processes. The 
penalty is just the delay and the area of the muxes, that is 
just of 3 gates delay per mux, significantly less costly in 
area than to implement any of the modules again (specially 
the Look-up-Tables) 
 
2.3. Parallel process in the encryption 
In this architecture, all of the processes are performed with 
an internal bus of 128-bit. The ShiftRow, SubBytes and 

MixColumn processes shown in (fig. 2) as blocks are 
detailed in (fig. 3). 
The Input to the process is a 128-bit word, the matrix array 
proposed in the AES standard is unrolled as a linear vector 
of 8-bit elements, with all of the bytes being processed in 
parallel. 
The first of the operations (ShiftRow) is realized by the 
rearrangement of the input bus (In a CMOS 
implementation there won’t be transistors used, in 
consequence its delay will be almost zero).  
The second operation is the SubBytes operation, which is 
a non-linear byte substitution, the optimal way to do this 
transformation is to pre-calculate the results for each input 
byte, and store the results of this transformation in a fast 
hard-wired Look up Table. This 8-bit input, 8-bit output 
table is named SBOX. 
The third process is the Mix Column, which has been 
optimized for minimum gate delay, and optimums cmos 
implementation (this will be detailed in section 2.5). 
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Figure 3: Inside View of the parallelism 

in the encrypt process 
 
2.4. SubBytes Look-up-Table (S-BOX) 
The SubByte is a hard-wired Look-up-Table that has been 
written in Verilog as a decoder of 256 positions pointing 
to 8-bit elements.  
There are 16 S-BOX tables in the encrypt module. These 
blocks occupy most of the area in the CORE. 
Nevertheless, this is the best way to get the fastest 
encryption / decryption possible speed. The other solution 
would have been to perform the slow complex matrix 
transformation. 
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Figure 4: Sub Bytes module (S-BOX) 

For the encrypt process. 
 

2.5. Mix Column Module 
The mix column process (fig. 5) has been carefully 
developed to have the minimum possible delay. The full 
mix column process has just the delay of one X2 galois 
field (GF 28) multiplication (the math of Galois Field GF 
28 is explained in [1]), a two input xor, and a four input 
xor which can be designed as a complex CMOS function 
of multiple inputs (instead of the usual AND, OR array 
implementation). The mix column gate delays are 
explained in section 3.2 . 
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Figure 5: Mix-Column module  

For the encryption Process 
 
2.6. Multiplier per 2 in Galois Field 28  
The multiplier per two in the Galois field with module 
‘B00011011 (fig. 6) is the distinctive operation in the AES 
[1], all of the multiplications can be arranged to be a group 
of continuous X2 multiplications. On this design, the X2 
delay is equal to a XOR gate delay. 
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Figure 6: Multiplier per 2 module ‘B0001_1011 

In the Galois Field 2^8 
 

2.7. Parallel process in the decryption  
The equivalent unrolled version of the inverse cipher (fig. 
7) does the decrypt process very similar to the encrypt 
process. As with the encrypt process the hard-wired 
Inverse shift stage so it wont give us significant delays, 
next, 16 Inverse Sboxes receive the sixteen 8-bit words, 
finally, four inverse column modules receive four 32-bit 
words. 
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Figure 7: Inside View of the parallelism 

in the decrypt process 
2.8. Inverse Sbox for the decrypt process 
The AES defines a inverse sub-byte transformation which 
can be rearranged as a look-up-table (named inverse-
SBOX in (fig.8) ) with the exact same considerations as 
the SBOX but with different coefficients stored inside. 
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Figure 8: Inverse Sub Bytes module (Inv-S-BOX) 

For the decrypt process. 
 
2.9. Inverse Mix Column  
The main difference of the decrypt process from the 
encrypt process is the inverse mix column. The inverse 
mix column (fig. 9) will have a longer path to cover, 
because the process requires multiplications with higher 
coefficients than the mix column process. To minimize 
this effect, and to reduce the overall gate count, a 
multiproduct module was developed, this way, for the 16 
galois field products required in the invMixColumn, only 
4 of this kind of multipliers are utilized. 
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Figure 9: Inverse-Mix-Column module  

For the decryption Process 
 
2.10. Multiproduct Multiplier in Galois Field 28  
This module (fig. 10) was optimized to have the closest 
performance to its equivalent of the encrypt process, the 
product operation has been rearranged to be three X2 
product operation, that recursively use its internal results 
in order to get all of the multiplications required for the 
inv mix column. By doing so, the only extra delay added 
was of just two X2 delays, which translates to an 
additional two xor gates delay. This way the decryption 
process will be almost as fast as the encryption process. 
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Figure 10: Multipurpose multiplier module  

in the Galois Field 2^8 for the decrypt process 
 
In sum, by focusing only on the particulars GF 28 products 
required in the AES process for the Inv-mix-column, a 
lower gate delay than the one in [10] was reached. Our 
Inv-mix-column module’s delay is just of 5 xor gate delay. 
2.11 Some Improvements 
The possible improvements [3] on round-based encryption 
algorithms are inner-round pipelining (fig 11_a) and outer-
round pipelining (fig 11_b). 
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Figure 11: Pipelining Schemes 

In the inner round pipelining (fig11-a) the purpose is to 
divide the round process in separate stages, with a register 
between each stage. This way if we could be able to 
separate the one round in four stages of approximately the 
same delay, we would be able to encrypt four 128-bit data 
block in a 10+3 rounds because of the pipelining. The 
main trouble would be that it would require an architecture 
where each of the processes were performed exactly one 
after the other, so, it would be necessary to implement 
extra modules to perform the first and the last round which 
performs differently than the 2nd through 9th round (16 S-
Box and 16 inv-S-Box more). Inner pipelining would 
improve bit-through-output performance by at least a 
factor of four. 



The other possible improvement would be to serialize 
multiple complete round (outer round pipelining), putting 
register between them. This way if we had the ten 
complete rounds serialized the performance would 
increase by ten. The problem here would be the excessive 
area used and the massive amount of lines the control unit 
would have to handle. 
Note that the pipelined version will only work for the 
Electronic Code Book security scheme, were an input 128-
bit word will always transform in the same 128-bit 
ciphered word. 
The USA National Security Agency implemented de AES 
in ASIC with the outer round pipelining architecture, their 
performance results can be read in [6]. Their area usage 
was huge (471,996,329 um; 7,130,697 transistors for their 
5337.78 mbps version). 
 

3. RESULTS 
 
All of the architecture modules have been written in 
verilog, compiled and simulated thoroughly in Synapticad 
Veriloger. This tool helped to check if the processes were 
being performed  in the appropriate order and to check if 
whether the modules passed their data on time. 
The results presented here will come from the full custom 
design tool Insa Toulouse Microwind v2.5. On this tool 
was analyzed the critical path of each separate module of 
the encrypt/decrypt process (they just differ on the mix-
column process). Because of the pipelining, the critical 
module that will determine the theoretical performance of 
the AES CORE will be the encrypt/decrypt module. The 
key expansion was not analyzed because this process is 
done only once in the whole operation of the AES CORE, 
After the key is expanded, is stored in a memory and read 
directly from there, which has about the same delay as a 
SBOX-table look up. The performance of the control unit 
wasn’t analyzed either, that is because, this unit is 
composed of a large state machine which clearly works 
faster than the enc/dec module. 
All of the full custom modules analyses were designed for 
a CMOS 0.12 um technology. 
 
3.1. Look up table delay 
The full-custom look up table(fig. 13) is implemented as 
two decoders of 4 inputs, one of them selects the column 
and the other the row of the table. Once selected a cell in 
the table, eight couples of C-switches releases a hard-
wired 8-bit word. This implementation gives a delay (fig 
12) of 0.160 ns with a minimum period of the input word 
of 0.5ns. This can be seen in figure 11, where the fetched 
word passes from ‘h00 to ‘h11, giving the appropriate 
output accordingly to AES[1] (‘h63 and ‘h82).  
 

  
Figure 12: Look up table time diagram, passing 

From ‘H00 to ‘H11 in its input. 

F
igure 13: Part of the look up table cmos  

layout in Microwind 
 

3.2. Mix Column operation delay 
As shown in (fig 5), the mix column critical path will be 
the delay of a X2 operation followed by a xor (each input 
of 8 bits xored bit by bit ) and a four input xor (each input 
of 8 bits). In the worst case scenario for the 4 input xor, its 
delay (fig.14) is of 0.125ns, and for the 2 input xor is of 
0.50 ns. When all of the blocks were put together, the 
delay grew up to 0.520ns, because a automatic synthesis 
(fig.15) tool was used in order to be able to manage all of 
the data lines if a mixcolumn module. Because of the 
horizontal expansion of the cmos transistors of this tool 
the delay incremented higher than the adition of the simple 
modules’ delay. 
 



 
Figure 14: Maximum delay for the mix column 

Figure 15: Cmos layout of the mix Column by  
Automatic cmos synthesis 

3.3. Multiplexers 128x2 delay 
The multiplexers chosen for this AES CORE, were 128x2 
muxes, this is because its minimum gate delay in 
comparison to use a 128x8 mux. By arranging a set of 
128x2 the extra expenditure will be only of metal path.  
A multiplexer 128x2 can be seen as a set of 128 parallel 
couples of c-switches controlled by the same selector 
(fig.17) In consequence it is only required to analyze one 
of this. The delay (fig.16) of this kind of mux is only 
0.017ns. 
 

 
Figure 16: Maximum delay of the multiplexer 

 

 
Figure 17: Layout of the basic build cell of  

a mux by c-switches 
3.4. Register delay 
Similarly to the multiplexer the 128 bit register is 
composed of 128 parallel d-latches (fig.19) with the same 
clock and with the same delay (fig.18). The computed 
delay is of 0.06ns 
 

 
Figure 18: Delay of the fully customized cmos latch 

 

 
Figure 19: Cmos layout of the basic  

Latch for the 128-bit registry 
 

3.5. Conclusions 
From the numbers thrown above, the theoretical maximum   
speed for this architecture comes from the addition of the 
propagation delays, multiplied by a factor due to extra 
metal paths to connect the modules (1.5) and another to 
ensure that the data is stable enough (2). 



Total numerical delay for a simple round process: 1.291ns 
Max through output considering 10 rounds for 128-cipher 
key and 0.12 um cmos technology: 
 smegabitsbits

roundsns
/3304128*

2*5.1*10*291.1
1 =  

These results are in accordance with the through output 
reached by the microelectronics group of the University of 
California [4] & [4_A], who reached a data transfer rate of 
2290megabits/s on a 0.18 um cmos technology integrated 
circuit using 173k gates. 
More comparative results can be found in [5] where an un-
pipelined implementation on 0.35um CMOS was made, 
their through-output was of 1.95gbps using 613k gates. 
 

4. FUTURE WORK 
 

The present project is the thesis work advances for 
obtaining the electronic degree title of the author, the next 
stage of this work will the to make the whole encrypt / 
decrypt module in a full custom layout. As it was shown 
here, this critical process has to be carefully regarded.  
The other modules like the control unit, and the key 
scheduler will be synthesized in the Cadence software for 
its cmos layout, the actual code written in Verilog will be 
optimized and tested thoroughly in Synapticad and once it 
reaches its best performance it will be passed to Cadence. 
This project has also been presented for financing to the 
Academic Research Bureau of the Catholic University of 
Peru. 
In a second version of this architecture, it is planned to use 
inner and outer pipelining, this way we will get an AES 
core that works only in the ECB mode but with a really 
high through-output.  
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