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One of the ways to push the speed limits of Analog to Digital Converters (ADCs) is to time-

interleave several channels. However, any mismatch between channels degrades the converter
resolution.

The impact of gain and offset mismatches and time skews on the Signal-to-Noise Ratio (SNR)
has already been determined. However, no estimation of the Spurious-Free Dynamic Range
(SFDR) has been provided to date. This paper gives a probabilistic description of the problem. The
Probability Density Function (PDF) of the Spurious-Free-Dynamic Range (SFDR) is explicitly
calculated, giving access to important statistical parameters.

���� �!�
Se puede conseguir un convertidor analógico-digital de alta velocidad poniendo en paralelo

varios convertidores de velocidad media. Sin embargo, cualquier desapareamiento entre los canales
reduce la precisión del convertidor final. 

El impacto sobre la relación señal-ruido de las diferencias de ganancia y de offset, así como de
los errores en los instantes de muestreo de los convertidores ha sido determinado. Sin embargo, el
impacto sobre el SFDR no se ha evaluado. Este trabajo da una descripción probabilística del
problema. Se calcula explícitamente la función densidad de probabilidad del SFDR, dando así
acceso a importantes parámetros estadísticos.
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Many applications are requiring faster and faster

analog-to-digital converters. In Radio-Frequency
design, for example, the trend is to move the analog to
digital conversion to front-end or to intermediate
frequency, in order to implement digitally the filtering
and signal processing. Therefore, very high speeds are
expected for the ADCs and literature reports up to 6bits
at 1.3GHz [1]. However, these ADCs are usually flash
or folding architecture, which are also resolution
limited. Thus, it is becoming very difficult to go beyond
these limits without losing too much precision or
without using exotic and thus expansive technologies
(HEMT in GaAs, optical or even superconducting
ADCs) [2]. 

A possible way to gain some speed is to use the
time-interleaving technique, first presented by Black
and Hodges [3]. Figure 1 shows a general sketch of the
system. A number M of medium-speed ADCs are
operated in parallel but the sampling instants between
two consecutive ADCs are shifted by a fraction 1/M of
their clock period. By multiplexing the channel output
in a circular form, an equivalent high-speed ADC is
obtained, that should have the same precision as the
channel ADCs but with a speed M times higher. The
only full-speed operation is the multiplexing, which is
actually a digital operation. Thus, time-interleaving

trades area for speed in an approximately 1:1 ratio and
can be used with almost any ADC architecture.
Nevertheless, the drawbacks of this technique are two.
One of them is that the ADC throughput and bandwidth
are increased, but the latency will be the same as for the
channel ADCs, which can be critical for some
applications. But the most serious issue is that any
mismatch between the channels will result in a precision
loss. 

One important source of mismatch is the presence of
time skews in the sampling scheme. If the signal is not
uniformly sampled, precision is lost. Apart from time
skews, offset and gain mismatches are also specially
relevant. Indeed, for a single channel ADC, the exact
value of gain or offset is not of much importance, as it
will not affect the SNR or SFDR value. But for a time-
interleaved architecture much more care should be
taken as gain and offset mismatches will generate noise
spurs in the signal band. 

Estimations of the impact of these three kinds of
mismatch on the SNR have already been proposed in
other works [5, 6, 7, 8]. And even some solutions to
cope with the mismatches have begun to appear in the
literature [9, 10, 11]. Nevertheless, this work intends to
give a deeper insight to the mismatch issue through a
probabilistic treatment, completing the work presented
in [12]. A closed expression is developed for the
probability density function of the SFDR, as function of
the mismatch variance and the number of channels. To
our knowledge, this is the first study extracting SFDR
information from the channel mismatches.

The paper is organized as follows. Section 2
introduces the basics of the spectral analysis of time
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interleaved ADCs. Section 3 derives a closed form for
the SFDR probability density function and validates it
through simulations. Section 4 draws interesting
information from the probabilistic model about the
variation of SFDR with the number of channels. And at
last Section 6 summarizes the conclusions of this paper.

(#��)�����*��!�*+�$�

Shannon’s theorem implies that an ADC running at
fs cannot convert signal above fs/2, the Nyquist
frequency. Indeed, above fs/2, the input signal and its
alias at fs-fin mix and cannot be separated. In a time-
interleaved ADC, however, the aliases of all channel
ADCs cancel each others when output signals are
multiplexed, as can be seen in Fig. 2 for a 2-channels
ADC. In this case, each elementary ADC is running at
fe, and after the interleaving the overall sampling
frequency passes to be fs=2fe.

 

However, if there are mismatches, alias cancellation
is not complete and some spurs will remain on the final
spectrum. For an M-channel ADC with offset
mismatch, spurs will appear at every )WK fraction of the
sampling frequency (that is, fs/M, 2fs/M,..., (M-1)fs/M).
While for gain mismatch and time-skews, spurs will
appear like the signal modulated at every )WK fraction of
the sampling frequency (that is: fs/M+fin, fs/M-fin, 2fs/
M+fin, 2fs/M-fin,...).

In that follows, we will keep the same notation as in
[4,5], calling;

) --- the number of interleaved channels
!*+,�V --- the equivalent sampling period of the

ADCs array
�P --- the real sampling instant of channel �, taking

into account the time skews.
�P*�!���P!��where �P is the time skew associated to

channel �, expressed as a fraction of the sampling
period. 

We pretend to study separately the errors due to gain
mismatch, offset mismatch and time skews. Hence, the
channel ADCs are modelled in the simplest way
possible, as a fixed delay followed by a perfectly linear
device with variable slope and offset, as seen in Fig. 3.

Gain errors are introduced multiplying the signal
amplitude by a channel-dependent term, 1+
P, while
offset errors are considered with an additional term, �P.

 
Working in the z-domain and considering the time-

interleaved output sequence TI(n) as the sum of the
upsampled channel ADC sequences, 

the authors in [4] and [5] obtain a general expression
of the output spectrum that for the particular case of a
sinusoidal input with ωLQ�frequency and��� amplitude
can be written as,

(1)

As stated before, we can see that the first two terms
of Eq (1) stand for spurs appearing as uncancelled alias
of the signal around the Mth fractions of the sampling
frequency. These two terms are due to both gain
mismatch and time-skews. The third term of Eq (1)
stands for tones that appear at the Mth fractions of the
sampling frequency and that are due to offset mismatch.
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Obviously, the output spectrum expressed in Eq (1)
does not take into account the quantization error. But
this is not important because if the mismatch errors are
as small as the quantization error, the overall ADC can
be considered almost ideal.

In order to facilitate the comprehension of the
mathematical developments, let us try to establish a
clear representation of the spectrum. In Fig. 4, Eq (1) is
graphically represented over the band -./�V- for the case
of a 3-channel ADC.

A more traditional representation of the spectrum
would be over the half of this band, from 0 to the
Nyquist frequency, �V,0; and in fact it would also handle
the whole information, as &�ω�*&�0π,!�ω���However,
it appears to be more difficult to mentally manage the
folding of the spurs for different " values over the halves
of the signal bands. Over the represented band, the
signal is thus given by the terms in δ�ω�ωLQ� and
δ(ω+ωLQ�0π,!� (at "*. and at "*1 respectively). 

If mismatches are kept small, signal power can be
written as,

(2)

,#������)�%���$*$�+���!�$�+���!��$%!�

To introduce the probability treatment, we will
assume that all 
P, �P and �P in Eq.(1) are random
variables distributed with a Normal law1. These random
variables can be normalized such that,

(3)

with ( standing for either 
, � or �.

In the following development we will consider three
initial assumptions: 

a) one kind of mismatch will probably dominate over
the others, so we will study only one at a time (this
would otherwise complicate the treatment
unnecessarily)

b) small time skews, which will allow the use of
Taylor expansion, 

(4)

c) the first spur due to the offset mismatch, appearing
at �*., is considered as the whole ADC offset. 

The procedure to carry out the probabilistic approach
is illustrated in Fig. 5.

We will follow the same steps for the 3 types of
mismatch. The first step consists in calculating the PDF
of the spur power (the spur height), which should
depend on the value of ", that defines the spur position
in the spectrum. The second step consists in getting the
PDF of the highest spur, and the last step finally
deduces the SFDR PDF.

According to the flow presented in Fig. 5, we have to
calculate an expression of the spur power. The power of
the offset spur appearing at the "WK fraction of the
sampling frequency�(that is, at�"�V�,)) can be expressed
as the squared module of the third term in Eq (1).

1. A Normal Law is chosen as it is probably the 
most conservative assumption if no information 
on the technology mismatch is available. More-
over, at the ADCs level, the offset and gain mis-
matches as well as the time-skews can arise 
from lots of component mismatches. Then, to 
some extent, we can apply the Central Limit 
Theorem.
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(5)

We recall that the case "*. is not considered in this
study, as the spur in DC is considered as the overall
ADC offset. 

Here it is important to notice that the spur power
should depend on the value of ". However,   it is easily
verified that,

(6)

This actually means that the spur at  will
have the same height as the spur at .
Therefore, only the spurs corresponding to the integers
" comprised between 1 and M/2�have to be considered
for SFDR calculation. 

For the gain mismatch the result is very similar.
Moreover, we can notice that the second and the third
term in Eq (1) (the spurs at  and

 respectively) will also have the same
module, and thus only one of them should be considered
in the SFDR calculation. For the time-skews, the result
presents a little difference as the uncancelled aliases
around a sampling frequency fractions will not have the
same amplitude. However, if the terms �P are kept
small, this difference will also be very small and thus
only one of the two aliases can be taken into
consideration for the SFDR calculation. This is
equivalent to neglecting the orders higher than 1 in the
Taylor development of Eq (4).

Then, the power of the spurs for a gain mismatch can
be written as,

(7)

And for the time-skews,

(8)

It appears clearly that the probability treatment will
be the same for all the three mismatch contributions, as
the term #[0 has the same form in Eq (6), Eq (7) and
Eq (8). Therefore, we will thus treat the case of the

offset mismatch and then take the results to the gain
mismatch and time-skew cases.

We have obtained an equation relating the spur
power to the mismatch random variables. So the next
step of the flow described in Fig. 5 consists in finding
the probability density function of the spur power. 

Let us consider the case M=4. The first spur at "*+ is
computed as the sum of the channels offset over the 4th-
order roots of unity (see Fig. 6). For "*1, it is easily
seen that spur power would be the same as for k=1,
accordingly to Eq (6). However, for "*0, the sum is
realized over the square roots of unity, in only one
dimension of the phase plane.

For "*+ the power would behave as,

(9)

But for�"*0 it would behave as,

(10)

For other values of M (See Fig. 7 for the case of
M=5), the same phenomenon can be observed: if "� is
different from M/2 (which is always the case when M is
odd) the spurs would have the same type of PDF, but
when "*M/2, the PDF would be different. Normally, if
M is different from 4, the offset contributions should be
projected on the two dimensions of the phase plane.
Despite this fact and due to the circular symmetry of the
roots, the spurs behave as if there were M/2
contributions on one dimension and M/2 on the other.

Extending Eq (9) and Eq (10), we have, for "
different from M/2,
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(11)

The sum of ��variables distributed as a Normal law
$�.�+� is distributed as a Normal law , and
the sum of two squared variables distributed as a
Normal law is distributed as a Chi-square law with two
degrees of freedom, also known as Rayleigh law [12].
So Eq (11) leads to,

(12)

For "=M/2

(13)

as all �L3 are distributed as normal laws, Eq (13)
leads to,

(14)

Another important approximation that we will make
is that all spurs are independent. This is obviously not
true, but the fact that for different spurs the offset
contributions are summed in a different “order”
compensates the fact that the contributions are actually
the same (See Fig. 7).

Thus, using Eq (6), we can write,

(15)

Here, it is important to notice that the total signal
power has been calculated over the whole band and thus
it consists of two signal spectral lines, one at �LQ and
another at �V��LQ. Thus the height of one signal spectral
line is .

As stated in [12], the cumulate density function
(CDF) of the maximum of a set of independent random
variables is the product of their individual cumulate
density functions. Moreover, the probability density
function is the derivative of the cumulate density
function. As we consider that all spurs in the range,

 (16)

are independent, the probability density function of
the maximum comes to be:

a) if M is odd, all (M-1)/2 spurs have the distribution
of Eq (12),

(17)

b) if M is even, (M/2-1) spurs behave as Eq (12) and
the spur at "=M/2 behaves as Eq (14)

(18)

The expressions for �R and �H are given in Eq (12) and
Eq (14). &R and &H are their respective integrals (the
CDFs), considering that we must have ,

(19)

(20)

The next step to obtain the SFDR probability density
function is to realize the variable change in Eq (15). As
the relation between SFDR and �
(N�#0� �"�� is a
bijection, we have,

(21)

where, for the offset mismatch,

 and 

(22)

for the gain mismatch,

 and 

(23)

and for the time-skews,
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(24)

And the SFDR probability density function comes to
be:

a) for M odd,

(25)

b) for M even,

(26)

Where the term Φ����� corresponds to Eq (22) in the
case of offset mismatches, to Eq (23) in the case of gain
mismatches and to Eq (24) in the case of time skews.

.

In order to verify the correctness of these probability
density functions, the calculated results were compared
to 2000 Monte Carlo simulations of a virtual 14-bits M-
time interleaved ADC. For each run, M random offsets
were sampled from a N(0,σd) law and applied to the
channel ADCs. The FFT of the distorted sine-wave
output was then obtained and the SFDR was evaluated. 

Fig. 8 and Fig. 9 shows that SFDR does spread over
the distribution predicted by the mathematical model,
for either even or odd values of M.

Figure 10 presents the same kind of simulation, but
for time skews with σU*.�..4 and �LQ*�V,0��Here again,
the matching between the model and the simulation is
very good. In Fig. 11, an ADC with 4 channels has been
simulated for different values of time-skews. The
results are also in good agreement with the prediction.
Moreover we can notice that, as for the SNR, the
dispersion does not depend on the amplitude of the
time-skews.
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For gain mismatches the results are very similar to
the results for time-skews and offset mismatch. Thus,
Fig. 12 only presents one curve, showing a very good
matching between the simulation and the model for a 3-
channel ADC with a 1% gain mismatch. However, for
this curve, 10000 Monte Carlo runs were realized
instead of 2000, in order to get more comparison points.

-#������$!�%� ��$%!

Figure 13 shows the evolution of the expected SFDR
together with its standard deviation, which have been
calculated from the SFDR PDF. 

This figure leads us to comment three interesting
issues. The first one is that the SFDR increases with the
number of channels. This trend could be expected, as
the mean total noise had been seen to remain almost
constant [11] with the number of channels. Indeed,
when the number of channel is increased, more spurs
appear in the signal band, and the noise spreads over all

the spurs. As a result, the mean height of each spur
decreases and the SFDR increases. However, this trend
is not as significant as it could be expected (only 3dB
are gained from 2 to 8 channels instead of 6dB). This
can be explained by the fact that the SFDR does not rely
on the mean spur but on the highest spur. The overall
spur height decreases but this is compensated by the fact
that there are more spurs, and thus more possibility to
get a high spur.

The second interesting issue is that even channel
numbers give worse SFDR results than odd channel
numbers. This is due to the fact that the spurs which
correspond to "=M/2 (for M even), have a more
dispersed height than the others, making them more
likely to be the maximum spur, which determines the
SFDR. 

And the last issue that is worth commenting is the
SFDR dispersion.Usually most designs are likely to
implement a small number of channels in order to limit
the chip area. But as can be seen in Fig. 13, for small
values of M, the SFDR dispersion is quite large. More
concretely, for M=2 the standard deviation is as large as
10 dB. Therefore, this information should be taken into
account when fixing the design goals, for example using
the PDF to evaluate the convenient confidence
intervals.

0#��%!�*��$%!�

Time-interleaving is an appealing technique to
improve the analog to digital conversion speed for any
ADC architecture. However, this strategy will damage
the ADC resolution unless the channel mismatches are
kept small. 

In this paper, the impact of the gain and offset
mismatches, as well as of the time-skews on the SFDR
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of the resulting ADC has been studied from a
probabilistic point of view. The obtained expressions
for the Probability Density Function provide designers
with important information which should help to solve
design trade-off, to tailor safer margins or to fix clear
goals for developing mismatch calibration strategies. 
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