Classifying n-Input Boolean Functions

Vinicius P. Correia Andrél. Reis
vincor@inf.ufrgs.br andrei s@inf.ufrgs.br

Instituto de Informatica— UFRGS - Caixa Posta 15064
CEP 91501970 — Porto Alegre — RS — Brasil

Abstract

This paper discuses the dassfication of n-input Boolean functions. The ancept of P and NPN equivalence classes
isused to classfy n-inpu functions. Thisway, the set of n-input functionsis clasdfied according to three aiteria: the
number of functions, the number of P classes and the number of NPN classes. The meaning of these aiteria is
discussed through some affirmations relating themto practical aspects of Boolean function implementation.

Resumo

Este artigo discute a classficacdo de fungdes Booleanas de n entradas. O conceito de dasses de equivaléncia P e
NPN é usado na classficagdo de funcBes de n entradas. Deste modo, o conjunto das fungdes de n entradas é
classdficado de acordo comtrés critérios: o numero de fungdes, 0 nimero de dasses P e 0 nimero de dasses NPN.
O significado destes critérios € discutido aravés de algumas afirmacdes relacionando-0s com aspectos praticos da
implementacéo de funcdes Booleanas.

1 Introduction

The design of digital circuits involves a deg understanding of the concept of Boolean Functions. There ae many
operations usually applied in the digital circuit synthesis process. Many of these operations depend on the seach
space under consideration. Thisisthe cae of the matching phase performed during techndogy mapping [10], where
afunction (or only part of it) to be implemented is matched against cells from alibrary. Sometimes this matching is
limited to cells with a maximum number of inputs. The goa of this paper isto classfy n-input functionsin order to
have aprecise idea about the seach space of the whole set of n-input functions. The emphasis of the paper is on how
to use some @juivalence dassesto reduce the search space, and on the meaning of these equivalence dasses.

For agiven number of inpu variables, there is awell-defined number of functions. This number is given by 24(2"n),
where n is the number of input variables. Each n variable function has 2*n passble minterms, resulting in a truth
table with 2*n lines. Thisis shown in figure 1 for the @se of 2-input Boolean functions. The 2*n pasgble minterms,
or lines of the truth table, give the number of hitsin each column of the truth table. This way, the output columns of
the truth tables characterize agiven Bodean function as a binary number of 2*n bits. As there ae 2(2"n) numbers
of 2™n bits, there are 2(2™n) posshble different functions of ninputs. Thisisaso shown in figure 1 for the cae of 2-
inpu functions.

IAPARAVARAVAVA R AR ARAUM VLR R LA UE
wfofrjoj1rfofrjyjojrfoyrrjofjirfolrjofrti
orjojojtrjrjofofrfryjojojpryrjolofu1i|1il
1ofofofjfojojtrypryrfrfofofofojrypry1ryi
mjofofofofojojojoypryrfrfrfrfrf1rjl

Figure 1: All the 16 different 2-input functions.

Table 1 contains the information on the number of n-input functions for n varying from 2 to 4. It is possble to see
that for the @se of 4-input functions the search space isalmost intractable if many operations need to be repeated.

Table 1: Number of functions with 2, 3, 4 and n variables

Number of inpus | Number of functions
2 16
3 256
4 65536
n 2°M(2"n)

The n-inpu functions can be dasdfied into different classes (set of functions) in order to reduce the search space.
The number of functions is the first number to be cnsidered in the dasdfication of the set of n-inpu functions.
Other two numbers that could be used in the dasdfication of n-input functions are the numbers of P and NPN
equivalence das®s. As it will be discussed later, P classes group functions that are eguivalent under input
permutation while NPN classes group functions that are equivalent under input negation/permutation as well as
output negation.

The data structures used to verify function equivalence in this paper are the Binary Decision Diagrams (BDDs) [1].
BDDs are the most used form to represent Bodlean functions in Electronic Design Automation. There ae many
spedfic kinds of BDDs, depending on its use. Reduced Ordered Binary Decison Diagrams (ROBDDs) are
commonly used to compare Boolean functions usng the ROBDD strong canorical form (unique representation)
presented in [2]. This canonical form is necessary to verify the equivaence of the functions and group them into a
common equivalence dass More detail s about BDDs can be fourd in [1][2][3][4].

This paper is organized as follows. The implementation of n-input functionsis discussed in section 2. Sections 3 and
4 introduce the concepts of P clases, and NPN classes, respedively. Section 5 presents some results for the

classfication of 2, 3 and 4input functions. The concepts introduced in this paper are worked out in section 6, while
conclusions are discussed in section 7.

2 Implementation of n-input functions

s
I
(«)

I
>
ov]

I
>l
w

I
> [
wl

I

>
v|@
w

> |
™

S e e St e e Do e et
I I
=
==
TS[8| (Sl r e |@] |8 |8 || 8]

I

w | >
®

w

(=)

@I

w
Il

>1
o)

S| [~ >
Y
|
> | >

LN
Il
>
@l

RN
(Y
I
_

Figure 2: Implementations for all the 16 different 2-input functions.

The number of different n-input functions is 2%(2"n), as already demonstrated in section 1. Figure 2 shows the gates
needed to implement each o the 2-input functions from figure 1. Note that many dfferent functions are implemented
using the same gates.

3 Theconcept of P class

The fact that many diff erent 2-input functions may have the same gate-level implementations naturally introduces the
concept of P equivalence. P equivalence between 2 functions is obtained when it is posshble to achieve identical
values for both truth table outputs by permuting the function inputs. Functions that are P equivaent can be grouped
into P classes. For instance, the functionsI >< I andI >« | are P equivalent. Figure 3 shows al the 12

different P classes of 2-input functions. It is important to nde that despite the existence of 16 dfferent 2-input
functions, there ae only 12 different 2-input P classes. The circuits used to implement each P class are dso shownin
figure 3. Four P classes are omposed by 2 functions, while eight P classes are composed by only one function. The
most important property of P equivalent functionsis that they can dways be implemented with the same drcuit (or
cdl from a library). Therefore, it is possble to implement any of the 2-input functions with a single all from a
library composed o one gate implementation for each P class

/, ol
/, D
5T, D
f f -
f =)a
/. D
Js D
f =)
f]() f[2 i
f /1 f13 ﬂ}'
i D
f15 —

Figure 3: The 12 different 2-input P classes.

4 The concept of NPN class

From figure 3, it is possble to seethat even P classes may have similar implementations. For instance, functionsf,
f,, f, ., f, f,, . andf, have gate implementations based on a single nand gate plus some inverters. These functions
may be grouped into a NPN equivalence dass. NPN equivalence between 2 functions is obtained when it is posgble
to achieve identical values for both truth table outputs by permutation and/or negation of the function inputs and/or
negation of the function ouput. Figure 4 shows all the 4 dfferent NPN classes of 2-input functions, one NPN class
per line. It is important to note that despite the eistence of 16 different 2-input functions, there ae only 4 different
2-input NPN classes. There ae 2 NPN classes composed of 2 functions, one NPN class compased of 4 functions,
and ore NPN classcompased of 8 functions. NPN equivaent functions can be implemented with the same drcuit
plus ome inverters (used in the negation operations for the inputs and the output, if necessry). This way, it is
possbleto use asmaller library composed of one representative gate for each NPN classplus one inverter cell. This

approach is specially useful when the @st of the inverter isvery low.

f15L

D|f

)

f

~

D

[, D

fy D

fll f13

f, D

f.

(3

f

~

0

)

2

in
e

AN e N R N AN
A
Y
o

D~

5 Realts

Figure 4: The 4 different 2-input NPN classes.

In order to classfy n-input functions into P and NPN classs, a tod that constructs minimal implementations of
Bod ean functions in the ROBDD strong canonicd form was implemented. By performing input permutations, the
set of P classesis derived. By performing permutation/negation at the inputs and negation at outputs the set of NPN
classsis derived. Asthe ejuivalence-cheding tod is based on ROBDDs, we used the number of nodes in the final
ROBDD implementation as a parameter of the rdative omplexity of functions and classes. Results are shown in
tables 2, 3 and 4, respedively, for 2-input, 3-input and 4-inpu functions.

Table 2: Number of 2-input functions, P classes and NPN classes according to their ROBDD size.

Nodes BDDs P NPN
0 2 2 1
1 4 2 1
2 8 6 1
3 2 2 1

Total 16 12 4

Table 3: Number of 3-input functions, P classes and NPN classes according to their ROBDD size.

pd

WD~ |T
Z

BDDs P
2 2
6 2
24 6
62 26
88 30
14
80

Z
mhwmpoé_

74
Total 256

H
S

Table 4: Number of 4-input functions, P classes and NPN classes according to their ROBDD size.

Nodes BDDs P NPN
0 2 2 1
1 8 2 1
2 48 6 1
3 236 26 4
4 960 204 14
5 3248 710 38
6 8928 1342 70
7 17666 1272 68
8 23280 420 25
9 11160 0 0

Total 65536 3984 222

The results presented in table 2 confirm the number of 2-input functions, P classes and NPN classes discussed earlier
in figures 1 to 4. Table 4 shows the number of different 4-input functions, P and NPN classes, according to the size
of its ROBDD representation. First column shows the BDD sizes considering the number of non-terminal nodes.
BDD sizes vary from 0 to 9, and this is compatible with the upper bourd for BDD size derived in [4]. All the BDD
sizesin table 1 were obtained with the same variable ordering [3]. In the case of P and NPN classes, the smaller
BDD sizefor the functions belonging to the dassis considered.

Table 5: Number of functions, P classes, and NPN classes according to the number of inputs.

of inputs Functions P classes NPN classes
1 4 4 2
2 16 12 4
3 256 80 14
4 65536 3984 222

6 Working out the concepts

In order to understand the aiteriathat were used for the dassfication of n-input functions, some related affirmations
will be discussed. As the examples involves the concept of Universal Logic Gates (ULGs), we will begin by
explaining this concept.

6.1 Theconcept of ULG

An Universal Logic Gate (ULG) is a programmable logic gate that can implement several different logic functions,
according to its configuration. The term Universal was introduced because this kind of gate normally can implement
al the n-input functions for a given n. This way an Universal logic gate could implement al the universe of n-inpu
functions. However, thisis not always true. For instance, if an ULG is able to implement &l the n-input functions, it
is not necessrily able to implement all the (n+1)-input functions. This way an ULG can only implement a limited
number of functions, P classes or NPN classes. A clasdc example of implementation of an ULG as a binary dedsion
treeis down in figure 5. In this binary decision tree, a variable is evaluated at each level. If the variable value is O,
the left arc is activated. Otherwise, the value is 1 and the right arc is activated. This way, if abc=101 then the output
value is the minterm m,. The ULG works smilarly for al the other minterm values, represented as sjuares in figure
5. These minterms are stored in flip-flops, therefore they are programmable to be egqual to 0 or 1. Decision nodes,
represented in figure 5 as circles, areimplemented with multiplexors.

Figure 5: ULG viewed as a binary decision tree.
6.2 How many cdlsinthelibrary?

Based on the ULG implementation presented in figure 5, it is posdgble to state some misleading conclusions which
unadvertised people muld accept astrue.

Fallacy: ThisULG is able to implement all the 256 3-inpu functions, so it is as powerful as a &l library
composed of 256 cells.

This is not true, because severa different 3-input functions may be implemented with the same drcuits. These
functions are grouped in P clases. Therefore, it is necessary only 80 (the number of 3-inpu P classes) cdlsin a
library able to implement any of the 3-input functions with only one cll.

6.3 How tomeasure ULGS?

The question raised in the previous subsection leads to another question: Which number should be used to measure
the efficacy of an ULG? There ae 3 criteria: the number of functions, P classes or NPN classs it is able to
implement. The number of functionsis not a goad criterion because many functions have the same implementation.
Therefore, the number of P classes was used. What about to use the number of NPN classes?

Pitfall: My ULG isable to implement 180 out of the 222 NPN classes of 4-input variables.
This affirmation is correct only if the ULG provides a mean to implement input and output negation. This way, the

ULG can implement complete NPN classes. If the input/output negation is not allowed, the ULG will be &le to
implement some NPN classes only partially. Some functions of the NPN class can be implemented while others

cannot. Thisway, it makes no sense to say that this NPN classcan be implemented reither to say that it canna. The
best number to be used to classfy ULGsis the number of P classes that it can implement, because input permutation
of a &l is aways allowed. If input/output negation is available & no cog, it makes sense to use NPN classes for
clasdfication. The origin of this pitfall is that the first ULGs alowed inpu/output negation, thus it was possble to
classfy them by using NPN classes. Afterwards, new UL Gs that did not allow inpu/output negation were proposed,
leading to this pitfall.

6.4 Thecost of an ULG
At this point an attentive reader could ask the following question:

Disturbing question: Why use ULGs if every Bodean function can be implemented by using only 2-input
nand cell s?

The use of ULGs offers programmability at later levels of implementation. For instance, there ae drcuits based on
UL Gs that can be quickly customized by using the higher metal levels. FPGAs based on RAM can be programmed
more than once. The st of an ULG isusualy higher than an implementation using several cells from alibrary, but
this cost is compensated by the programmability. When using cells from alibrary, it doesn’t matter how many cells
are used to implement each logic function, only the final cost matters. For ULG based logic, it isinteresting to have
more powerful ULGs that are able to implement a larger number of functions, while maintaining the cost of the
ULGsaslow aspossble.

6.5 When invertershave no cost?

As the aiterion wsed (P or NPN classs) in the dassfication depends on the cogt of inpu/output inversion, it is
interesting to discusswhen inverters have no cost. In the ase of ULGs, it is possble to invert input variables that are
selection variables of multiplexors: it is possble to invert these variables by exchanging the multiplexed functions.
The negation of the outputs can be easly done when the minterms are stored in flip-flops. However, even for
multiplexor and flip-flop based UL Gs, the inverson operation may not be available for all the inpusoutputs due to
hardwired connections. Thisway, it is necessary to be very careful when using NPN classes to measure the dficacy
of ULGs.

7 Conclusion

This paper discussed the dassfication of n-inpu functions cons dering the number of functions, P classes and NPN
classes. The number of P classs is the best criteria, because each P class corresponds to a single implementation,
and input permutation is always allowed. A BDD based tool that groups functions into P and NPN classes was
developed in order to enumerate the number of P and NPN classes of n-input functions. Future work will include an
investigation d minimal implementations for each P classconsidering several kinds of logic, like static CMOS logic
[5], passtransistor logic[6] [7], and the onesused in [8] [9].

8 References

[1] R.E.Bryant. "Graph-based algorithms for Boolean function manipulation”, IEEE Transactions on Computers, vol. C-35, n° 8, pp. 677-691,
August 1986.

[2] K.S.Brace R.L.Ruddel, R.E.Bryant. "Efficient implementation o aBDD padkage". Proc. of 27th DAC, pp. 272-277, 1990.

[3] Steven J. Friedman and Kenneth J. Supowit, "Finding the Optimal Variable Ordering for Binary Dedsion Diagrams’, I[EEE Transadions on
Computers, Vol. 39, No. 5,pp. 710713 May 1990

[4] Heh-Tyan Liaw and Chen-Shang Lin, "On the OBDD-Representation o General Boolean Functions', IEEE Transadions on Computers, Vol.
41,No. 6, pp. 661-664, June 1992.

[5] T. Ibaraki, S. Muroga, " Synthesis of Networks with a Minimun Number of Negative Gates', IEEE Transadions on Computers, Vol. C-20, No.
1,pp. 49-58, January 1971.

[6] P. Buch, A. Narayan, A. R. Newton, A. Sangiovanni-Vincentelli, "On Synthesizing PassTransistor Networks", IWLS '97, pp. 101-108

[7] V. Bertacm, S. Minato, P. Verpladse, L. Benini, G. de Micheli, "Dedsion Diagrams and PassTransistor Logic Synthesis', IWLS '97, pp. 109
113 May 1997

[8] Charles R. Baugh, C. S. Chandersekaran, Richard S. Swee ad Saburo Muroga, "Optimal Networks of NOR-OR Gates for Functions of Three
Variables', IEEE Transadions on Computers, Vol. C-21, No. 2,pp. 153-160, February 1972.

[9] J. N. Culliney, M. H. Young T. Nakagawa and S. Muroga, "Results of the Synthesis of Optimal Networks of AND and OR Gates for Four-
Variable Switching Functions', |EEE Transadions on Computers, Vol. C-27, No. 1,pp. 76-85, January 1979.

[10] E. Detjens, G.Ganna, R.Rudell, A.L.Sangiovanni-Vinccentelli, A.Wang. "Techndogy mapping in MIS" ICCAD, 1987, pp. 116-119.

