
1

Classifying n-Input Boolean Functions

Vinícius P. Correia André I. Reis
 vincor@inf.ufrgs.br andreis@inf.ufrgs.br

Instituto de Informática – UFRGS - Caixa Postal 15064
CEP 91501-970 – Porto Alegre – RS – Brasil

Abstract

This paper discusses the classification of n-input Boolean functions. The concept of P and NPN equivalence classes
is used to classify n-input functions. This way, the set of n-input functions is classified according to three criteria: the
number of functions, the number of P classes and the number of NPN classes. The meaning of these criteria is
discussed through some affirmations relating them to practical aspects of Boolean function implementation.

Resumo

Este artigo discute a classificação de funções Booleanas de n entradas. O conceito de classes de equivalência P e
NPN é usado na classificação de funções de n entradas. Deste modo, o conjunto das funções de n entradas é
classificado de acordo com três critérios: o número de funções, o número de classes P e o número de classes NPN.
O significado destes critérios é discutido através de algumas afirmações relacionando-os com aspectos práticos da
implementação de funções Booleanas.

2

1 Introduction

The design of digital circuits involves a deep understanding of the concept of Boolean Functions. There are many
operations usually applied in the digital circuit synthesis process. Many of these operations depend on the search
space under consideration. This is the case of the matching phase performed during technology mapping [10], where
a function (or only part of it) to be implemented is matched against cells from a library. Sometimes this matching is
limited to cells with a maximum number of inputs. The goal of this paper is to classify n-input functions in order to
have a precise idea about the search space of the whole set of n-input functions. The emphasis of the paper is on how
to use some equivalence classes to reduce the search space, and on the meaning of these equivalence classes.
For a given number of input variables, there is a well -defined number of functions. This number is given by 2 (̂2^n),
where n is the number of input variables. Each n variable function has 2^n possible minterms, resulting in a truth
table with 2^n li nes. This is shown in figure 1 for the case of 2-input Boolean functions. The 2^n possible minterms,
or lines of the truth table, give the number of bits in each column of the truth table. This way, the output columns of
the truth tables characterize a given Boolean function as a binary number of 2^n bits. As there are 2 (̂2^n) numbers
of 2^n bits, there are 2^(2^n) possible different functions of n inputs. This is also shown in figure 1 for the case of 2-
input functions.

Figure 1: All the 16 different 2-input functions.

Table 1 contains the information on the number of n-input functions for n varying from 2 to 4. It is possible to see
that for the case of 4-input functions the search space is almost intractable if many operations need to be repeated.

Table 1: Number of functions with 2, 3, 4 and n variables

Number of inputs Number of functions
2 16
3 256
4 65536
n 2^(2^n)

The n-input functions can be classified into different classes (set of functions) in order to reduce the search space.
The number of functions is the first number to be considered in the classification of the set of n-input functions.
Other two numbers that could be used in the classification of n-input functions are the numbers of P and NPN
equivalence classes. As it will be discussed later, P classes group functions that are equivalent under input
permutation while NPN classes group functions that are equivalent under input negation/permutation as well as
output negation.
The data structures used to verify function equivalence in this paper are the Binary Decision Diagrams (BDDs) [1].
BDDs are the most used form to represent Boolean functions in Electronic Design Automation. There are many
specific kinds of BDDs, depending on its use. Reduced Ordered Binary Decision Diagrams (ROBDDs) are
commonly used to compare Boolean functions using the ROBDD strong canonical form (unique representation)
presented in [2]. This canonical form is necessary to verify the equivalence of the functions and group them into a
common equivalence class. More detail s about BDDs can be found in [1][2][3][4].
This paper is organized as follows. The implementation of n-input functions is discussed in section 2. Sections 3 and
4 introduce the concepts of P classes, and NPN classes, respectively. Section 5 presents some results for the

3

classification of 2, 3 and 4-input functions. The concepts introduced in this paper are worked out in section 6, while
conclusions are discussed in section 7.

2 Implementation of n-input functions

Figure 2: Implementations for all the 16 different 2-input functions.

The number of different n-input functions is 2^(2^n), as already demonstrated in section 1. Figure 2 shows the gates
needed to implement each of the 2-input functions from figure 1. Note that many different functions are implemented
using the same gates.

3 The concept of P class

The fact that many different 2-input functions may have the same gate-level implementations naturall y introduces the
concept of P equivalence. P equivalence between 2 functions is obtained when it is possible to achieve identical
values for both truth table outputs by permuting the function inputs. Functions that are P equivalent can be grouped
into P classes. For instance, the functions and are P equivalent. Figure 3 shows all the 12
different P classes of 2-input functions. It is important to note that despite the existence of 16 different 2-input
functions, there are only 12 different 2-input P classes. The circuits used to implement each P class are also shown in
figure 3. Four P classes are composed by 2 functions, while eight P classes are composed by only one function. The
most important property of P equivalent functions is that they can always be implemented with the same circuit (or
cell from a library). Therefore, it is possible to implement any of the 2-input functions with a single cell from a
library composed of one gate implementation for each P class.

4

Figure 3: The 12 different 2-input P classes.

4 The concept of NPN class

From figure 3, it is possible to see that even P classes may have similar implementations. For instance, functions f1,
f2, f4, f7, f8, f11, f13 and f14 have gate implementations based on a single nand gate plus some inverters. These functions
may be grouped into a NPN equivalence class. NPN equivalence between 2 functions is obtained when it is possible
to achieve identical values for both truth table outputs by permutation and/or negation of the function inputs and/or
negation of the function output. Figure 4 shows all the 4 different NPN classes of 2-input functions, one NPN class
per line. It is important to note that despite the existence of 16 different 2-input functions, there are only 4 different
2-input NPN classes. There are 2 NPN classes composed of 2 functions, one NPN class composed of 4 functions,
and one NPN class composed of 8 functions. NPN equivalent functions can be implemented with the same circuit
plus some inverters (used in the negation operations for the inputs and the output, if necessary). This way, it is
possible to use a smaller library composed of one representative gate for each NPN class plus one inverter cell. This
approach is specially useful when the cost of the inverter is very low.

Figure 4: The 4 different 2-input NPN classes.

5 Results

5

In order to classify n-input functions into P and NPN classes, a tool that constructs minimal implementations of
Boolean functions in the ROBDD strong canonical form was implemented. By performing input permutations, the
set of P classes is derived. By performing permutation/negation at the inputs and negation at outputs the set of NPN
classes is derived. As the equivalence-checking tool is based on ROBDDs, we used the number of nodes in the final
ROBDD implementation as a parameter of the relative complexity of functions and classes. Results are shown in
tables 2, 3 and 4, respectively, for 2-input, 3-input and 4-input functions.

Table 2: Number of 2-input functions, P classes and NPN classes according to their ROBDD size.

Nodes BDDs P NPN
0 2 2 1
1 4 2 1
2 8 6 1
3 2 2 1

Total 16 12 4

Table 3: Number of 3-input functions, P classes and NPN classes according to their ROBDD size.

Nodes BDDs P NPN
0 2 2 1
1 6 2 1
2 24 6 1
3 62 26 4
4 88 30 4
5 74 14 3

Total 256 80 14

Table 4: Number of 4-input functions, P classes and NPN classes according to their ROBDD size.

Nodes BDDs P NPN
0 2 2 1
1 8 2 1
2 48 6 1
3 236 26 4
4 960 204 14
5 3248 710 38
6 8928 1342 70
7 17666 1272 68
8 23280 420 25
9 11160 0 0

Total 65536 3984 222

The results presented in table 2 confirm the number of 2-input functions, P classes and NPN classes discussed earlier
in figures 1 to 4. Table 4 shows the number of different 4-input functions, P and NPN classes, according to the size
of its ROBDD representation. First column shows the BDD sizes considering the number of non-terminal nodes.
BDD sizes vary from 0 to 9, and this is compatible with the upper bound for BDD size derived in [4]. All the BDD
sizes in table 1 were obtained with the same variable ordering [3]. In the case of P and NPN classes, the smaller
BDD size for the functions belonging to the class is considered.

Table 5: Number of functions, P classes, and NPN classes according to the number of inputs.

6

of inputs Functions P classes NPN classes
1 4 4 2
2 16 12 4
3 256 80 14
4 65536 3984 222

6 Working out the concepts

In order to understand the criteria that were used for the classification of n-input functions, some related aff irmations
wil l be discussed. As the examples involves the concept of Universal Logic Gates (ULGs), we will begin by
explaining this concept.

7

6.1 The concept of ULG

An Universal Logic Gate (ULG) is a programmable logic gate that can implement several different logic functions,
according to its configuration. The term Universal was introduced because this kind of gate normally can implement
all the n-input functions for a given n. This way an Universal logic gate could implement all the universe of n-input
functions. However, this is not always true. For instance, if an ULG is able to implement all the n-input functions, it
is not necessarily able to implement all the (n+1)-input functions. This way an ULG can only implement a limited
number of functions, P classes or NPN classes. A classic example of implementation of an ULG as a binary decision
tree is shown in figure 5. In this binary decision tree, a variable is evaluated at each level. If the variable value is 0,
the left arc is activated. Otherwise, the value is 1 and the right arc is activated. This way, if abc=101 then the output
value is the minterm m5. The ULG works similarly for all the other minterm values, represented as squares in figure
5. These minterms are stored in flip-flops, therefore they are programmable to be equal to 0 or 1. Decision nodes,
represented in figure 5 as circles, are implemented with multiplexors.

Figure 5: ULG viewed as a binary decision tree.

6.2 How many cells in the library?

Based on the ULG implementation presented in figure 5, it is possible to state some misleading conclusions which
unadvertised people could accept as true.

Fallacy: This ULG is able to implement all the 256 3-input functions, so it is as powerful as a cell li brary
composed of 256 cell s.

This is not true, because several different 3-input functions may be implemented with the same circuits. These
functions are grouped in P classes. Therefore, it is necessary only 80 (the number of 3-input P classes) cell s in a
library able to implement any of the 3-input functions with only one cell.

6.3 How to measure ULGs?

The question raised in the previous subsection leads to another question: Which number should be used to measure
the efficacy of an ULG? There are 3 criteria: the number of functions, P classes or NPN classes it is able to
implement. The number of functions is not a good criterion because many functions have the same implementation.
Therefore, the number of P classes was used. What about to use the number of NPN classes?

Pitfall: My ULG is able to implement 180 out of the 222 NPN classes of 4-input variables.

This affirmation is correct only if the ULG provides a mean to implement input and output negation. This way, the
ULG can implement complete NPN classes. If the input/output negation is not allowed, the ULG wil l be able to
implement some NPN classes only partially. Some functions of the NPN class can be implemented while others

8

cannot. This way, it makes no sense to say that this NPN class can be implemented neither to say that it cannot. The
best number to be used to classify ULGs is the number of P classes that it can implement, because input permutation
of a cell is always allowed. If input/output negation is available at no cost, it makes sense to use NPN classes for
classification. The origin of this pitfall is that the first ULGs allowed input/output negation, thus it was possible to
classify them by using NPN classes. Afterwards, new ULGs that did not allow input/output negation were proposed,
leading to this pitfall.

6.4 The cost of an ULG

At this point an attentive reader could ask the following question:

Disturbing question: Why use ULGs if every Boolean function can be implemented by using only 2-input
nand cell s?

The use of ULGs offers programmability at later levels of implementation. For instance, there are circuits based on
ULGs that can be quickly customized by using the higher metal levels. FPGAs based on RAM can be programmed
more than once. The cost of an ULG is usually higher than an implementation using several cells from a library, but
this cost is compensated by the programmability. When using cells from a library, it doesn’t matter how many cell s
are used to implement each logic function, only the final cost matters. For ULG based logic, it is interesting to have
more powerful ULGs that are able to implement a larger number of functions, while maintaining the cost of the
ULGs as low as possible.

6.5 When inverters have no cost?

As the criterion used (P or NPN classes) in the classification depends on the cost of input/output inversion, it is
interesting to discuss when inverters have no cost. In the case of ULGs, it is possible to invert input variables that are
selection variables of multiplexors: it is possible to invert these variables by exchanging the multiplexed functions.
The negation of the outputs can be easil y done when the minterms are stored in flip-flops. However, even for
multiplexor and flip-flop based ULGs, the inversion operation may not be available for all the inputs/outputs due to
hardwired connections. This way, it is necessary to be very careful when using NPN classes to measure the efficacy
of ULGs.

9

7 Conclusion

This paper discussed the classification of n-input functions considering the number of functions, P classes and NPN
classes. The number of P classes is the best criteria, because each P class corresponds to a single implementation,
and input permutation is always allowed. A BDD based tool that groups functions into P and NPN classes was
developed in order to enumerate the number of P and NPN classes of n-input functions. Future work will include an
investigation of minimal implementations for each P class considering several kinds of logic, like static CMOS logic
[5], pass transistor logic[6] [7], and the ones used in [8] [9].

8 References

[1] R.E.Bryant. "Graph-based algorithms for Boolean function manipulation", IEEE Transactions on Computers, vol. C-35, n° 8, pp. 677-691,
August 1986.
[2] K.S.Brace, R.L.Ruddel, R.E.Bryant. "Eff icient implementation of a BDD package". Proc. of 27th DAC, pp. 272-277, 1990.
[3] Steven J. Friedman and Kenneth J. Supowit, "Finding the Optimal Variable Ordering for Binary Decision Diagrams", IEEE Transactions on
Computers, Vol. 39, No. 5,pp. 710-713, May 1990.
[4] Heh-Tyan Liaw and Chen-Shang Lin, "On the OBDD-Representation of General Boolean Functions", IEEE Transactions on Computers, Vol.
41,No. 6, pp. 661-664, June 1992.
[5] T. Ibaraki, S. Muroga, "Synthesis of Networks with a Minimun Number of Negative Gates", IEEE Transactions on Computers, Vol. C-20, No.
1,pp. 49-58, January 1971.
[6] P. Buch, A. Narayan, A. R. Newton, A. Sangiovanni-Vincentelli , "On Synthesizing Pass Transistor Networks", IWLS '97, pp. 101-108.
[7] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, G. de Micheli , "Decision Diagrams and Pass Transistor Logic Synthesis", IWLS '97, pp. 109-
113, May 1997.
[8] Charles R. Baugh, C. S. Chandersekaran, Richard S. Swee and Saburo Muroga, "Optimal Networks of NOR-OR Gates for Functions of Three
Variables", IEEE Transactions on Computers, Vol. C-21, No. 2,pp. 153-160, February 1972.
[9] J. N. Culli ney, M. H. Young, T. Nakagawa and S. Muroga, "Results of the Synthesis of Optimal Networks of AND and OR Gates for Four-
Variable Switching Functions", IEEE Transactions on Computers, Vol. C-27, No. 1,pp. 76-85, January 1979.
[10] E. Detjens, G.Gannot, R.Rudell , A.L.Sangiovanni-Vinccentelli , A.Wang. "Technology mapping in MIS" ICCAD, 1987, pp. 116-119.

