
 1

Coefficient Optimizations for High Performance Parallel FIR Filters in FPGAs
Vagner S. Rosa, Sergio Bampi

Inst. Informatics - Univ. Fed. Rio Grande do Sul

Porto Alegre, RS – Brazil

{ vsrosa,bampi} @inf.ufrgs.br

Eduardo Costa

Universidade Católica de Pelotas

Pelotas, RS – Brazil

ecosta@ucpel.tche.br

ABSTRACT
This paper presents a new method to optimize hardwired
parallel finite impulse response (FIR) filters and its
corresponding synthesis results showing hardware and
power minimization. The optimization techniques are
applied to a FPGAs synthesis process, for multiplier-less
fixed coefficients filters. The proposed method combines
three approaches: scaled coefficient generation, reduction
of the coefficients to N-Power-of-Two (NPT) terms,
where the maximum number of non-zero in each
coefficient is taken as a constraint, and finally a transfer
function directed selection. We present pre and post
synthesis results using Quartus II FPGA tool, showing
that NPT is a good approach to optimize FIR filters.

1. INTRODUCTION
Finite Impulse Response (FIR) filters are of great
importance in the digital signal processing (DSP) world.
Their linear phase and feed forward implementation
characteristics make them very useful for building high
performance filters.

There are two main aspects to be considered when
designing a hardwired parallel filter, namely the number of
bits required for the signal and the required transfer
function of the filter. The former one determines the word
length of the entire datapath. The later one is determined
by two parameters, namely the number of taps, and the bit-
width for each coefficient. The most expensive blocks in
terms of area, delay, and power in a FIR filter are the
multipliers needed to implement it. In this paper we
address optimizations in the filter by a combination of
three known approaches. First, we scale the coefficients for
further synthesis, and second, convert to power-of-two
terms, later selecting the best coefficient set taking into
account the transfer function characteristics of the filter.
This approach explores the reduction in complexity of the
multiplier block by reducing each coefficient to a limited
amount of power-of-two terms (nonzero bits). A scale
factor to be multiplied by all coefficients prior to its
conversion to fixed point is found by exhaustive search, in
order to improve the transfer function generated by the N-
power-of-two (NPT) coefficients. Second, using the
transposed form of the filter and considering all the
multipliers implemented as adder trees (hence, multiplier-

less), we generate a dedicated adder tree for each
multiplier in the multiplier block (multiplier-less
implementation).

The goal of this work is to verify the performance of the
NPT algorithm when targeting a FPGA implementation in
reducing the overall filter complexity and check its
applicability to ASIC synthesis as well.

We present a brief review of FIR filter design in section 2
and related work in section 3. In section 4 we present our
algorithm, and in section 5 its implementation. Section 6
shows synthesis results and section 7 summarizes the
conclusions and presents our proposals for future work.

2. FIR FILTER DESIGN
A FIR filter can be mathematically expressed by the
equation (1) [8]:

�
−

=

−=
1

0

][][][
N

i

inXiHnY , (1)

where X represents the input signal, H the filter
coefficients, Y the output signal, Y[n] is the current output
sample, and N is the number of coefficients (or taps) of the
filter. This is a convolution operation of the filter
coefficients along the signal. The coefficients of the FIR
filter are obtained using the Discrete Fourier Transform
(DFT) of the required frequency transfer function with
some known windowing method. In the sequential
implementation a set of multiply-and-accumulate (MAC)
operations is performed for each sample of the input data
signal, multiplying the N delayed-input samples by
coefficients and summing up the results together to
generate the output signal. Parallel implementations may
follow two architectures. The first one consists of unrolling
of MAC loop where we have several delayed versions of
the input signal entering in a fully parallel multiplier block,
followed by a summation block. The other one consists of
a multiplier block, which takes the same input signal and
delivers each output to an input of a delayed summation
block. The former (Fig. 1a) is the direct form parallel FIR
filter and the latter (Fig. 1b) corresponds to its transposed
form.

 2

H0 H1 HN-2 HN-1 H2

X

Y

HN-1 HN-2 H1 H0 HN-2

X

Y

(a) (b)

Figure 1. Parallel FIR filters in (a) direct form

or (b) transposed direct form.

Both the direct and transposed architectures of the FIR
filter have the same complexity [6]. For multiplier block
optimization algorithms, the transposed form is preferred
[1].

In this work the baseline “non-optimized” implementation
for a multiplier-less filter (multipliers are converted to
adder trees, using adders only to the nonzero partial
products, i.e. nonzero bits) refers to the minimum
coefficient width and the number of taps needed to
implement it, using the symmetry optimization, i.e. the
same multiplier is used for the n-th and (N-n)-th taps

3. RELATED WORK
There are two main approaches to optimize parallel
hardwired constant coefficients FIR filters: coefficient
optimizations and multiplier block optimizations. The
coefficient optimization approach consists of representing
each coefficient as sums of power-of-two terms and
limiting the number of power-of-two terms in each
coefficient [2,3,5,6]. That means a reduction of the number
of bits in ‘1’ state in each coefficient, reducing the number
of adders needed to implement the resulting tree. The
optimum case is to retain just one power-of-two term in
each coefficient, totally eliminating additions in the
multiplier block, requiring operand-shifts only. In
hardwired implementations the shift operation has zero
hardware cost and minimum wiring costs. We name this
NPT (N-Power-of-Two), where N is the number of power-
of-two terms. This approach has the advantage of
preserving the full dynamic range of the coefficients and
limiting the number of adders necessary to make the
multiplication operation (leading to low power and high
speed). The disadvantage of this approach is that the
transfer function of the filter does not preserve the one
with original fixed-point representation. In [2] an extensive
review of the power-of-two technique is presented.

In this work we use the NPT thecnique and show the gain
obtained against the non-optimized version. For each
architecture a VHDL description is generated. We
compare the adder savings with the FPGA synthesized area
– in logic elements (LE), delay and power. The key point
is to verify if the savings found in the effort to reduce the
number of adders is mapped to a reduction in the FPGA
parameters.

4. ALGORITHM DESCRIPTION
The algorithm to select the best NPT coefficient set, based
on scaling of the coefficients before the conversion to
fixed point format is described below.

The algorithm for the NPT phase is Algorithm 1. It takes
the floating-point coefficients calculated previously from
the filter specification and generates several NPT
coefficients sets in the following way. First, the floating-
point coefficient set is multiplied by a scale factor, then
converted to fixed point and finally to NPT. In order to
convert a fixed-point representation to NPT, the N most
significant nonzero bits are maintained and the remaining
are zeroed. The transfer function for each NPT set
generated is also calculated. This process is repeated for
each discrete scale factor specified. The next step is the
selection phase where we select the “optimum” coefficient
set based on the characteristics of the transfer function of
each set. We use the in-band ripple as a design constraint,
thus excluding the transfer functions for which the entire
pass band response is not within the maximum specified
ripple. Finally the coefficient set whose minimum
attenuation in the stop band is the maximum among all the
resulting transfer functions is elected as optimum,
according to these criteria. The algorithm 1 shows the NPT
coefficient selection process.

Algorithm 1: NPT coefficient selection by transfer
function analysis

Step 1: Obtain the floating-point coefficients, scale
factors range and step, transfer function allowable ripple
and the maximum number of PT terms.

Step 2: For each element in scale factor vector: generate a
new set of coefficients by multiplying each coefficient in
floating point by the current scale factor; make the
coefficients positive and save the signal in of each
coefficient in a set of signals for later optimization; get the
fixed point representation of this set of coefficients;
convert the fixed point coefficients to NPT; obtain a
transfer function of the filter with these NPT coefficients.
Add the set of coefficients and transfer function to a set of
filters.

Step 3: From the set of filters, eliminate those that do not
respect the in-band ripple constraint.

Step 4: From the results of Step 4, find out the coefficient
set that generates a filter with the highest minimum
attenuation in the stop band (from all transfer functions
considered, as in Fig. 3-a) and select this set as the
solution of the NPT phase.

5. METHODOLOGY
The algorithm for NPT coefficient selection by transfer
function analysis (Algorithm 1 described in the Section 3)

 3

was implemented in Matlab, aided by DSP and
visualization toolboxes. A set of filter parameters
configure the input file to the algorithm, resulting in the
search space and the selected solution graphically. The
selection of filter coefficients proceeds efficiently, and the
scale step factor is kept constant, at 1/100 increments. No
heuristics has to guide this scaling, since it runs fast for up
to hundreds of scaling factors in filters with hundreds of
taps.

Since the filter coefficients can be positive or negative, and
we deal only with positive numbers, our method saves
signals to be treated separately. This was helpful for the
task of optimizing the multiplier block (small negative
numbers have a large amount of nonzero digits). Figure 2
shows the architecture developed for this implementation,
where the signals S1..N of the coefficients C1..N were
saved to be control signals in the final summation block
(the signal actually selects between add or subtract
functions). This is a transposed direct form FIR filter. A
multiplier at the output Y is needed (for 1/Scaling_factor
adjust) to keep the unity gain in the pass band, since our
method scaled all the filter coefficients to determine a
better representation in the NPT phase. This multiplier can
be eliminated if the gain of the filter is not critical.

X

Y

1/SF

Multiplier Block

Clock
SN-2 SN-3 S1 S0

2’s
Comp

SN-1

Figure 2. Architecture of the hardware description output.

The program was implemented in a way we can turn the
NPT, or the CSE, or both phases off in the filter generation
tool.

6. RESULTS
After implementing the algorithm described in the section
3, we analyzed the behavior of the NPT rounding
technique for several filter specifications. Our experiments
show that it is very hard to get more than 20dB per PT
digit (a similar result was stated in [2] for CSD
coefficients), and this is very dependent on the frequency
response shape and on the number of taps. Fig. 3 shows
graphical results for the Low Pass (LP) filter LP1 specified
in Table 2.

Dotted line in Fig. 3(a) and 3(b) shows the transfer
function for the FIR filter LP1 in fixed point. Solid lines in
Fig. 3(a) show the transfer functions for the 2PT
coefficient sets for all the 76 scale factors tested (0.5 to 2
in steps of 0.02). Fig. 3(b) compares the filter transfer

function for the LP1 with fixed point coefficients and the
optimized version with 2PT coefficient set selected by our
method. The insert in Fig. 3(b) shows that the effect of the
optimization is negligible in the in-band ripple.

Table 1. Comparison of the coefficients
before and after the NPT phase.

Table 1 shows a comparison between the original fixed-

point coefficients and the reduced 2PT coefficients for
LP1 FIR filter (using the same scale factor for both
coefficient sets). As the coefficients are symmetrical, the
table presents only the first �N/2�+1 coefficients of the 49-
tap filter.

The results presented in Table 1 show the capability of the
NPT phase in reducing the number of nonzero digits in the
coefficients, the number of adders needed for each
coefficient and the logic depth of the adder tree. As stated
in section 4, all coefficients are set positive, as the sign of

T
ap

Fi
xe

d
Po

in
t

N
um

 A
dd

er
s

L
og

ic
 D

ep
th

 O
pt

im
iz

ed

2P
T

C

oe
ff

ic
ie

nt
s

N
um

. A
dd

er
s

L
og

ic
 D

ep
th

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

000000001

000000001

000000001

000000000

000000010

000000001

000000011

000000110

000000100

000000011

000001010

000000111

000000111

000010100

000010001

000001001

000100011

000100000

000001011

001000010

001001010

000001100

010101100

101000000

110011110

0

0

0

0

0

0

1

1

0

1

1

2

2

1

1

1

2

0

2

1

2

1

3

1

5

0

0

0

0

0

0

1

1

0

1

1

2

2

1

1

1

2

0

2

1

2

1

2

1

3

000000001

000000001

000000001

000000000

000000010

000000001

000000011

000000110

000000100

000000011

000001010

000001000

000001000

000010100

000010001

000001001

000100100

000100000

000001100

001000010

001001000

000001100

010100000

101000000

110000000

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T
ot

al

 27

3
(m

ax
)

 16

1
(m

ax
)

 4

the coefficients are treated separately in the final
summation block (not considered here). Note that the NPT
technique not only reduces the total number of adders but
also the logic depth in terms of number of adders needed
to implement the multipliers, which produces a delay
reduction.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

Normalized Frequency

G
ai
n
(d
B
)

 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

Normalized Frequency

G
ai
n
(d
B
)

(b)

Figure 3. (a) Fixed point (dotted) x 2PT for each scale factor
tested (solid), and (b) fixed point (dotted) x 2PT selected

(solid). Ripple in pass band (detail).

Table 2 presents the specifications for a few low pass (LP)
and high pass (HP) filters used to test our methodology.
The parameters have been selected to cover the 1PT to
4PT-reduced coefficients and 10- to 16-bits fixed point.
Table 3 summarizes the results for the filter specifications
presented in Table 2, showing the number of adders for
each filter with and without the application of the
optimization algorithm.

Table 4 shows that significant reduction in the number of
adders is achieved by applying NPT optimization
separately. The great advantage of using the NPT

algorithm as described is that we greatly simplify the
complexity of the multipliers by controllably modifying the
coefficients with small and acceptable changes in the filter
transfer function. Also the logic depth is guaranteed to be
low in the NPT optimization phase. Limiting the number
of power-of-two (PT) terms in each coefficient also
reduces the summation tree needed to implement each
multiplier [2] (as shown in Table 1 for LP1 filter),
reducing the delay. Additionally, a lower logic depth can
lead to a reduction in the glitching activity, hence reducing
the power further. The NPT approach improve results,
reducing the number of adders needed in all cases, as we
expected.

A benchmark was made to verify the performance of the
method for FPGA synthesis. The parameters for the filter
and for the tool used to synthesize the various VHDL
descriptions of the filter to a target FPGA are presented in
Table 3. The optimization steps in the synthesis tool were
left to its default values.

We present three performance results obtained after FPGA
synthesis, namely the number of logic elements (LE), the
worst-case delay, and the overall power consumption
estimated with random input samples. We can observe in
Table 5 a significant reduction in the number of adders and
the power consumption when we make the NPT coefficient
reduction. The delay and power estimates shown in Table
5 corroborate that the NPT is very effective in reducing
both, while the previous effort to optimize the architectural
level specification of the adder tree by the non-optimized
version is less effective (consumes more power) in the
FPGA implementation

Table 2. Filters used to test the proposed methodology.

Parameter LP1 LP2 LP3 HP1 HP2

of Taps 49 31 71 31 51

Scale Range
(increment)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

Bits Fixed
Point

10
(sign+9)

16
(sign+15)

16
(sign+15)

12
(sign+11)

16
(sign+15)

NPT digits 2 4 3 1 4

Pass Band
(normalized)

0-0.3 0-0.3 0-0.05 0.6-1 0.7-1

Max. Pass
Band Ripple

0.1 0.01 0.1 0.1 0.01

Stop Band
(normalized)

0.35-1 0.35-1 0.07-1 0-0.4 0-0.6

Stop Gain (dB) -40 -60 -60 -20 -60

Window Type Hamming Hamming Blackman Hamming Hamming

0 0.05 0.1 0.15 0.2 0.25

-1

-0.8

-0.6

-0.4

-0.2

0

Normalized Frequency

G
ai
n
(d
B
)

 5

Table 5. FIR filter synthesis results in FPGAs

VHDL #LE Delay Power
Filtro

Optmization
Method Adders % #LE % ns % mW %

Unopt. 76 100 3017 100 44 100 325 100
LP1

NPT 60 79 2630 87 35 80 169 52

Unopt. 90 100 3428 100 66 100 1078 100
LP2

NPT 69 77 2798 82 55 83 530 49

Unopt. 206 100 8062 100 86 100 2990 100
LP3

NPT 146 71 5742 74 65 76 967 32

Unopt. 47 100 1976 100 43 100 258 100
HP1

NPT 31 65 1573 80 21 49 96 37

Unopt. 138 100 5572 100 72 100 1463 100
HP2

NPT 106 77 4649 83 56 78 765 52

Table 3. Parameters Set for the synthesis results.

Filter Form Transposed Direct Form

Input 16 bits samples

Output 32 bits samples

Coefficients 16 bits

FPGA EP20K200E

Synthesis tool Quartus II 2.2

Power estimation 500 random input vectors

Sample-rate frequency 10MHz

Table 4. Optimization results for the filters in Table 2.

Filter Mul.-less NPT

 Add. % Add. %

LP1 76 100 60 79

LP2 90 100 69 77

LP3 206 100 146 71

HP1 47 100 31 65

HP2 138 100 106 77

Mean 100 74

7. CONCLUSION
From the results obtained we conclude that using NPT lead
to an improved, i.e. reduced, number of adders to an
average of 74% (equivalent to a reduction of 26% - Table
4), compared to the non-optimized version of the
multiplier-less dedicated adder tree, for which the
coefficient are fixed-length and the symmetrical
characteristics of FIR filters are also exploited.

The tool we developed generate the VHDL output for later
targeting to an ASIC or FPGA. In this work we show
FPGA synthesis results, leading to an average of 81% of
the area required for synthesis of the non-optimized
version. This means an average area reduction of 19%. We
conclude that the NPT optimization lead to a reduction of
area in FPGA synthesis similar to the reduction in the
number of adders. The number of LE in the synthesized
version includes the registers, which are the same in the
optimized and in the non-optimized version, which leads to
a percentual reduction of area smaller than the reduction
obtained in the number of adders (19% in area in FPGA
against 26% in the number of adders).

Another important result is the power required by the filter
for its filtering work. Using NPT optimization we were
able to achieve reductions to an average of 44% of power
required in the non-optimized version using a random
signal as input of the filter. This means a reduction of 66%

in power consumption, which is a large power
improvement.

The average delay in the FPGA synthesized optimized
version was 73% of the non-optimized version (a reduction
of 27%). This enables higher operating frequency without
any architectural optimization other than the NPT
coefficients.

We finally conclude that for FPGA synthesis, the NPT
coefficient optimization lead to filters with smaller area,
delay and power, which combined lead to a much better
performance filter, with small and acceptable
modifications in the transfer function in order to produce a
coefficient set with limited non-zero bits per coefficient.

In our future works we will evaluate optimizations
achievable using cannonical signed digit (CSD)
representation in the coefficients and also architectural
optimization techniques to reduce area, delay and power
comsumption of the entire filter..

8. REFERENCES
[1] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde,

and D. Iuraekova, “A new algorithm for elimination
of common subexpressions” , IEEE Trans. Computer-
Aided Design, 18. (Jan 1999), 58-68.

 [2] H. Samueli, “An improved search algorithm for the
design of multiplier-less FIR filters with powers-of-
two coefficients” , IEE Trans. Circuits Syst., 36 (July
1989), 1044-1047.

[3] K-H Chen, T-D Chiueh, “Design and implementation
of a reconfigurable FIR filter” , Proc of 2003 Int.
Symp. Circuits Systems, ISCAS ’03, 3, (May 2003),
25-28.

[4] K. Hwang, “Computer arithmetic Principles,
Architecture and Design” : Wiley, 1979.

 6

[5] C. Lim, J. B. Evans, and B. Liu, “Decomposition of
binary integers into signed power-of-two terms” ,
IEEE Trans. Circuits Syst., 38, (June 1991) 667-672.

[6] J. Portela, E. Costa. J. Monteiro, “Optimal
Combination of Number of Taps and Coefficient Bit-
Width for Low Power FIR Filter Realization” , IEEE
European Conference on Circuit Theory and Design.
(Sep. 2003), 145-148.

[7] Q. Zhao, Y. A. Tadokoro, “Simple Design of FIR
Filters with Powers-of-Two Coefficients” , IEEE
Transactions on Circuits and Systems. 35, 5 (May,
1988).

[8] R. W. Hamming, “Digital Filters” , Prentice Hall, 3rd
ed., (1989).

-

