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ABSTRACT 
This paper presents a new method to optimize hardwired 
parallel finite impulse response (FIR) filters and its 
corresponding synthesis results showing hardware and 
power minimization. The optimization techniques are 
applied to a FPGAs synthesis process, for  multiplier-less 
fixed coefficients filters. The proposed method combines 
three approaches: scaled coefficient generation, reduction 
of the coefficients to N-Power-of-Two (NPT) terms, 
where the maximum number of non-zero in each 
coefficient is taken as a constraint, and finally a transfer 
function directed selection. We present pre and post 
synthesis results using Quartus II FPGA  tool, showing 
that NPT is a good approach to optimize FIR filters.  

1. INTRODUCTION 
Finite Impulse Response (FIR) filters are of great 
importance in the digital signal processing (DSP) world. 
Their linear phase and feed forward implementation 
characteristics make them very useful for building high 
performance filters.  

There are two main aspects to be considered when 
designing a hardwired parallel filter, namely the number of 
bits required for the signal and the required transfer 
function of the filter. The former one determines the word 
length of the entire datapath. The later one is determined 
by two parameters, namely the number of taps, and the bit-
width for each coefficient. The most expensive blocks in 
terms of area, delay, and power in a FIR filter are the 
multipliers needed to implement it. In this paper we 
address optimizations in the filter by a combination of 
three known approaches. First, we scale the coefficients for 
further synthesis, and second, convert to power-of-two 
terms, later selecting the best coefficient set taking into 
account the transfer function characteristics of the filter. 
This approach explores the reduction in complexity of the 
multiplier block by reducing each coefficient to a limited 
amount of power-of-two terms (nonzero bits). A scale 
factor to be multiplied by all coefficients prior to its 
conversion to fixed point  is found by exhaustive search, in 
order to improve the transfer function generated by the N-
power-of-two (NPT) coefficients.  Second, using the 
transposed form of the filter and considering all the 
multipliers implemented as adder trees (hence, multiplier-

less), we generate a dedicated adder tree for each 
multiplier in the multiplier block (multiplier-less 
implementation).  

The goal of this work is to verify the performance of the 
NPT algorithm when targeting a FPGA implementation in 
reducing the overall filter complexity and check its 
applicability to ASIC synthesis as well. 

We present a brief review of FIR filter design in section 2 
and related work in section 3. In section 4 we present our 
algorithm, and in section 5 its implementation. Section 6 
shows synthesis results and section 7 summarizes the 
conclusions and presents our proposals for future work. 

2. FIR FILTER DESIGN 
A FIR filter can be mathematically expressed by the 
equation (1) [8]: 
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where X represents the input signal, H the filter 
coefficients, Y the output signal, Y[n] is the current output 
sample, and N is the number of coefficients (or taps) of the 
filter. This is a convolution operation of the filter 
coefficients along the signal. The coefficients of the FIR 
filter are obtained using the Discrete Fourier Transform 
(DFT) of the required frequency transfer function with 
some known windowing method. In the sequential 
implementation a set of multiply-and-accumulate (MAC) 
operations is performed for each sample of the input data 
signal, multiplying the N delayed-input samples by 
coefficients and summing up the results together to 
generate the output signal. Parallel implementations may 
follow two architectures. The first one consists of unrolling 
of MAC loop where we have several delayed versions of 
the input signal entering in a fully parallel multiplier block, 
followed by a summation block. The other one consists of 
a multiplier block, which takes the same input signal and 
delivers each output to an input of a delayed summation 
block. The former (Fig. 1a) is the direct form parallel FIR 
filter and the latter (Fig. 1b) corresponds to its transposed 
form. 
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Figure 1. Parallel FIR filters in (a) direct form 

or (b) transposed direct form. 

Both the direct and transposed architectures of the FIR 
filter have the same complexity [6]. For multiplier block 
optimization algorithms, the transposed form is preferred 
[1].  

In this work the baseline “non-optimized”  implementation 
for a multiplier-less filter (multipliers are converted to 
adder trees, using adders only to the nonzero partial 
products, i.e. nonzero bits) refers to the minimum 
coefficient width and the number of taps needed to 
implement it, using the symmetry optimization, i.e. the 
same multiplier is used for the n-th and (N-n)-th taps 

3. RELATED WORK 
There are two main approaches to optimize parallel 
hardwired constant coefficients FIR filters: coefficient 
optimizations and multiplier block optimizations. The 
coefficient optimization approach consists of representing 
each coefficient as sums of power-of-two terms and 
limiting the number of power-of-two terms in each 
coefficient [2,3,5,6]. That means a reduction of the number 
of bits in ‘1’  state in each coefficient, reducing the number 
of adders needed to implement the resulting tree. The 
optimum case is to retain just one power-of-two term in 
each coefficient, totally eliminating additions in the 
multiplier block, requiring operand-shifts only. In 
hardwired implementations the shift operation has zero 
hardware cost and minimum wiring costs. We name this 
NPT (N-Power-of-Two), where N is the number of power-
of-two terms. This approach has the advantage of 
preserving the full dynamic range of the coefficients and 
limiting the number of adders necessary to make the 
multiplication operation (leading to low power and high 
speed). The disadvantage of this approach is that the 
transfer function of the filter does not preserve the one 
with original fixed-point representation. In [2] an extensive 
review of the power-of-two technique is presented.  

In this work we use the NPT thecnique and show the gain 
obtained against the non-optimized version. For each 
architecture a VHDL description is generated. We 
compare the adder savings with the FPGA synthesized area 
– in logic elements (LE), delay and power. The key point 
is to verify if the savings found in the effort to reduce the 
number of adders is mapped to a reduction in the FPGA 
parameters.  

4. ALGORITHM DESCRIPTION 
The algorithm to select the best NPT coefficient set, based 
on scaling of the coefficients before the conversion to 
fixed point format is described below. 

The algorithm for the NPT phase is Algorithm 1. It takes 
the floating-point coefficients calculated previously from 
the filter specification and generates several NPT 
coefficients sets in the following way. First, the floating-
point coefficient set is multiplied by a scale factor, then 
converted to fixed point and finally to NPT. In order to 
convert a fixed-point representation to NPT, the N most 
significant nonzero bits are maintained and the remaining 
are zeroed. The transfer function for each NPT set 
generated is also calculated. This process is repeated for 
each discrete scale factor specified. The next step is the 
selection phase where we select the “optimum” coefficient 
set based on the characteristics of the transfer function of 
each set. We use the in-band ripple as a design constraint, 
thus excluding the transfer functions for which the entire 
pass band response is not within the maximum specified 
ripple. Finally the coefficient set whose minimum 
attenuation in the stop band is the maximum among all the 
resulting transfer functions is elected as optimum, 
according to these criteria. The algorithm 1 shows the NPT 
coefficient selection process. 

Algorithm 1: NPT coefficient selection by transfer 
function analysis 

Step 1:  Obtain the floating-point coefficients, scale 
factors range and step, transfer function allowable ripple 
and the maximum number of PT terms. 

Step 2: For each element in scale factor vector:  generate a 
new set of coefficients by multiplying each coefficient in 
floating point by the current scale factor; make the 
coefficients positive and save the signal in of each 
coefficient in a set of signals for later optimization; get the 
fixed point representation of this set of coefficients; 
convert the fixed point coefficients to NPT; obtain a 
transfer function of the filter with these NPT coefficients. 
Add the set of coefficients and transfer function to a set of 
filters. 

Step 3:  From the set of filters, eliminate those that do not 
respect the in-band ripple constraint. 

Step 4:  From the results of Step 4, find out the coefficient 
set that generates a filter with the highest minimum 
attenuation in the stop band (from all transfer functions 
considered, as in Fig. 3-a ) and select this set as the 
solution of the NPT phase. 

5. METHODOLOGY 
The algorithm for NPT coefficient selection by transfer 
function analysis (Algorithm 1 described in the Section 3) 
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was implemented in Matlab, aided by DSP and 
visualization toolboxes. A set of filter parameters 
configure the input file to the algorithm, resulting in the 
search space and the selected solution graphically. The 
selection of filter coefficients  proceeds efficiently, and the 
scale step factor is kept constant, at 1/100 increments. No 
heuristics has to guide this scaling, since it runs fast for up 
to hundreds of scaling factors in filters with hundreds of 
taps. 

Since the filter coefficients can be positive or negative, and 
we deal only with positive numbers, our method saves 
signals to be treated separately. This was helpful for the 
task of optimizing the multiplier block (small negative 
numbers have a large amount of nonzero digits). Figure 2 
shows the architecture developed for this implementation, 
where the signals S1..N of the coefficients C1..N were 
saved to be control signals in the final summation block 
(the signal actually selects between add or subtract 
functions). This is a transposed direct form FIR filter. A 
multiplier at the output Y is needed  (for 1/Scaling_factor 
adjust) to keep the unity gain in the pass band, since our 
method scaled all the filter coefficients to determine a 
better representation in the NPT phase. This multiplier can 
be eliminated if the gain of the filter is not critical.  
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Figure 2. Architecture of the hardware description output. 

The program was implemented in a way we can turn the 
NPT, or the CSE, or both phases off in the filter generation 
tool. 

6. RESULTS 
After implementing the algorithm described in the section 
3, we analyzed the behavior of the NPT rounding 
technique for several filter specifications. Our experiments 
show that it is very hard to get more than 20dB per PT 
digit (a similar result was stated in [2] for CSD 
coefficients), and this is very dependent on the frequency 
response shape and on the number of taps. Fig. 3 shows 
graphical results for the Low Pass (LP) filter LP1 specified 
in Table 2. 

Dotted line in Fig. 3(a) and 3(b) shows the transfer 
function for the FIR filter LP1 in fixed point. Solid lines in 
Fig. 3(a) show the transfer functions for the 2PT 
coefficient sets for all the 76 scale factors tested (0.5 to 2 
in steps of 0.02). Fig. 3(b) compares the filter transfer 

function for the LP1 with fixed point coefficients and the 
optimized version with 2PT coefficient set selected by our 
method.  The insert in Fig. 3(b) shows that the effect of the 
optimization is negligible in the in-band ripple. 

Table 1. Comparison of the coefficients  
before and after the NPT phase. 

 

Table 1 shows a comparison between the original fixed-

point coefficients and the reduced 2PT coefficients for 
LP1 FIR filter (using the same scale factor for both 
coefficient sets). As the coefficients are symmetrical, the 
table presents only the first �N/2�+1 coefficients of the 49-
tap filter. 

The results presented in Table 1 show the capability of the 
NPT phase in reducing the number of nonzero digits in the 
coefficients, the number of adders needed for each 
coefficient and the logic depth of the adder tree. As stated 
in section 4, all coefficients are set positive, as the sign of 
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the coefficients are treated separately in the final 
summation block (not considered here). Note that the NPT 
technique not only reduces the total number of adders but 
also the logic depth in terms of number of adders needed 
to implement the multipliers, which produces a delay 
reduction.  
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Figure 3. (a) Fixed point (dotted) x 2PT for each scale factor 
tested (solid), and (b) fixed point (dotted) x 2PT selected 

(solid). Ripple in pass band (detail). 

 

Table 2 presents the specifications for a few  low pass (LP) 
and high pass (HP) filters used to test our methodology. 
The parameters have been selected to cover the 1PT to 
4PT-reduced coefficients and 10- to 16-bits fixed point. 
Table 3 summarizes the results for the filter specifications 
presented in Table 2, showing the number of adders for 
each filter with and without the application of the 
optimization algorithm. 

Table 4 shows that significant reduction in the number of 
adders is achieved by applying NPT optimization 
separately. The great advantage of using the NPT 

algorithm as described is that we greatly simplify the 
complexity of the multipliers by controllably modifying the 
coefficients with small and acceptable changes in the filter 
transfer function. Also the logic depth is guaranteed to be 
low in the NPT optimization phase. Limiting the number 
of power-of-two (PT) terms in each coefficient also 
reduces the summation tree needed to implement each 
multiplier [2] (as shown in Table 1 for LP1 filter), 
reducing the delay. Additionally, a lower logic depth can 
lead to a reduction in the glitching activity, hence reducing 
the power further. The NPT approach improve results, 
reducing the number of adders needed in all cases, as we 
expected. 

A benchmark was made to verify the performance of the 
method for FPGA synthesis. The parameters for the filter 
and for the tool used to synthesize the various VHDL 
descriptions of the filter to a target FPGA are presented in 
Table 3.  The optimization steps in the synthesis tool were 
left to its default values. 

We present three performance results obtained after FPGA 
synthesis, namely the number of logic elements (LE), the 
worst-case delay, and the overall power consumption 
estimated with random input samples. We can observe in 
Table 5 a significant reduction in the number of adders and 
the power consumption when we make the NPT coefficient 
reduction. The delay and power estimates shown in Table 
5 corroborate that the NPT is very effective in reducing 
both, while the previous effort to optimize the architectural 
level specification of the adder tree by the non-optimized 
version is less effective (consumes more power) in the 
FPGA implementation 

 

Table 2. Filters used to test the proposed methodology. 

Parameter LP1 LP2 LP3 HP1 HP2 

# of Taps 49 31 71 31 51 

Scale Range 
(increment) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

Bits Fixed 
Point 

10 
(sign+9) 

16 
(sign+15) 

16 
(sign+15) 

12 
(sign+11) 

16 
(sign+15) 

NPT digits 2 4 3 1 4 

Pass Band 
(normalized) 

0-0.3 0-0.3 0-0.05 0.6-1 0.7-1 

Max. Pass 
Band Ripple 

0.1 0.01 0.1 0.1 0.01 

Stop Band 
(normalized) 

0.35-1 0.35-1 0.07-1 0-0.4 0-0.6 

Stop Gain (dB) -40 -60 -60 -20 -60 

Window Type Hamming Hamming Blackman Hamming Hamming 
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Table 5. FIR filter synthesis results in FPGAs 

VHDL #LE Delay Power 
Filtro 

Optmization 
Method Adders % #LE % ns % mW % 

Unopt. 76 100 3017 100 44 100 325 100 
LP1 

NPT 60 79 2630 87 35 80 169 52 

Unopt. 90 100 3428 100 66 100 1078 100 
LP2 

NPT 69 77 2798 82 55 83 530 49 

Unopt. 206 100 8062 100 86 100 2990 100 
LP3 

NPT 146 71 5742 74 65 76 967 32 

Unopt. 47 100 1976 100 43 100 258 100 
HP1 

NPT 31 65 1573 80 21 49 96 37 

Unopt. 138 100 5572 100 72 100 1463 100 
HP2 

NPT 106 77 4649 83 56 78 765 52 

Table 3. Parameters Set for the synthesis results. 

Filter Form Transposed Direct Form 

Input 16 bits samples 

Output 32 bits samples 

Coefficients 16 bits 

FPGA EP20K200E 

Synthesis tool Quartus II 2.2 

Power estimation 500 random input vectors 

Sample-rate frequency 10MHz 

 

Table 4. Optimization results for the filters in Table 2. 

Filter Mul.-less NPT 

 Add. % Add. % 

LP1  76 100 60 79 

LP2 90 100 69 77 

LP3 206 100 146 71 

HP1 47 100 31 65 

HP2 138 100 106 77 

Mean  100  74 

7. CONCLUSION 
From the results obtained we conclude that using NPT lead 
to an improved, i.e. reduced, number of adders to an 
average of 74% (equivalent to a reduction of 26% - Table 
4), compared to the non-optimized version of the 
multiplier-less dedicated adder tree, for which the 
coefficient are fixed-length and the symmetrical 
characteristics of FIR filters are also exploited. 

The tool we developed generate the VHDL output for later 
targeting to an ASIC or FPGA. In this work we show 
FPGA synthesis results, leading to an average of 81% of 
the area required for synthesis of the non-optimized 
version. This means an average area reduction of 19%. We 
conclude that the NPT optimization lead to a reduction of 
area in FPGA synthesis similar to the reduction in the 
number of adders. The number of LE in the synthesized 
version includes the registers, which are the same in the 
optimized and in the non-optimized version, which leads to 
a percentual reduction of area smaller than the reduction 
obtained in the number of adders (19% in area in FPGA 
against 26% in the number of adders). 

Another important result is the power required by the filter 
for its filtering work. Using NPT optimization we were 
able to achieve reductions to an average of 44% of power 
required in the non-optimized version using a random 
signal as input of the filter. This means a reduction of 66% 

in power consumption, which is a large power 
improvement. 

The average delay in the FPGA synthesized optimized 
version was 73% of the non-optimized version (a reduction 
of 27%). This enables higher operating frequency without 
any architectural optimization other than the NPT 
coefficients.   

 

We finally conclude that for FPGA synthesis, the NPT 
coefficient optimization lead to filters with smaller area, 
delay and power, which combined lead to a much better 
performance filter, with small and acceptable 
modifications in the transfer function in order to produce a 
coefficient set with limited non-zero bits per coefficient. 

In our future works we will evaluate optimizations 
achievable using cannonical signed digit (CSD) 
representation in the coefficients and also architectural 
optimization techniques to reduce area, delay and power 
comsumption of the entire filter.. 
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