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ABSTRACT 
 
A core that obtains a fixed-point square root is presented. 
The algorithm used has been proposed by Li and Chu [1]. 
Three types of architecture are presented: a low cost 
iterative version, a fully pipelined version, and a fully 
combinatorial version.  
The user can scale the size of the core, choose the 
precision bits required and select the architecture by 
simply setting parameters. 
In order to prove the efficiency of the algorithm, the 
algorithm is targeted to FPGAs in order to establish a 
comparison with a core provided by a leading vendor: 
ALTERA Corporation. The results are very encouraging: 
the core consumes fewer gates, is faster and has more 
options than the ALTERA core. 
The core is described in VHDL, and the results were 
obtained using the Quartus II 4.2 Web Edition. 
 

1. INTRODUCTION 
 
Square root is a basic operation in computer graphics and 
scientific calculation applications such as math co-
processors, DSP algorithms, data processing and control 
[4]. So, there is a great need to enhance this operation. In 
1996, Lu and Chi [1] have proposed a ‘new non-restoring 
sqrt algorithm’ for VLSI implementation, which has 
proved to be better than the existing VLSI algorithms. 
The core provides three types of architecture: iterative 
(which is not provided in the ALTERA core), pipelined 
and combinatorial. The remainder can be obtained using 
an extra adder, but since it is rarely used, it is dismissed to 
reduce the resource usage.  
If the user indicates more precision bits, the core considers 
this case to enhance the hardware; In the case of the 
ALTERA core, this parameter can not be indicated [2], 
and a well-known technique must be used to get precision 
bits from this core, this means that this case is not 
considered in order to enhance the architecture, and the 
hardware reduction relies solely on the synthesis tool. 
The next sections are divided as follows: Section 2 
describes the algorithm. Section 3 presents the three 
architectures. Section 4 explains the approach taken to get 

more precision bits and the changes of the architectures. 
Next, in the results, a detailed comparison between the 
core and the ALTERA’s core is presented. Finally, 
conclusions and recommendations are given. 
 

2.  A BRIEF DESCRIPTION OF THE NON-
RESTORING ALGORITHM 

 
2.1 New non-restoring Algorithm 
 
Radical:  ‘D’ of ‘2n bits. Square root: ‘Q’ of ‘n’ bits: 
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At each iteration, qk (the square root of d2k), is computed. 
Since d2k = d2(k+1)D2k+1D2k, that is D2k+1D2k is attached to 
d2(k+1)  to form d2k,  it can be inferred that D2k+1D2k must be 
used to get qk. That explains the fact the algorithm attaches 
D2k+1D2k to r’k+1 to form r’k in order to get qk. 
The remainder at each iteration, called rk, has ‘n-k+1’ bits, 
one more bit than qk [1]: rk = RnRn-1Rn-2 … Rk, k ≤ n. But 
the algorithm uses an estimated remainder, called r’k, that 
has ‘n-k+2’ bits, the MSB is the sign bit, which decides 
the value of Qk, and it can be demonstrated that only the 
‘n-k+1’ least significant bits of r’k are used to get the next 
estimated remainder r’k-1. Also, in order to get the real 
remainder R = r0, only the ‘n+1’ LSBs of r’0 are needed 
(the MSB determines Q0). It lessens the gate count, since a 
register of only ‘n-k+1’ bits is needed for r’k. 
 

3. ARCHITECTURES 
 

3.1 Fully-Pipelined Architecture 
To develop the architecture, it is necessary to unfold the 
algorithm described in Section 2.1. Therefore ‘n’ stages 
with ‘n’ adders/subtractors will appear. By observing the 
first iteration, a reduction is obtained: 

r’n-1  � D2n-1D2n-2 – 01 
Qn-1 � 1, if r’n-1 ≥ 0 
Qn-1 � 0, if r’n-1 < 0 

 
Note that r’n-1 and Qn-1 depend solely on D2n-1D2n-2, and a 
truth table can be described: 
 
 
 
 
 
 
 

 
As stated in Section 2.1, 
‘c’ is only used to get Qn-1 
and won’t be used further, 
thus, it is discarded. 
 

There is no need to perform the first subtraction and wait 
one cycle, if the result from the first iteration can be 
obtained directly from the first 2 MSBs of D. So the first 
stage can be embedded into the second stage, and there 
will be ‘n-1’ pipeline stages. 
This architecture is depicted in Figure 1. The computation 
of the remainder is not considered, although the core 
computes it if the user wants. Note that the dotted 
rectangles indicate the registers that would have appeared 
if the reduction of the first stage hadn’t been performed. 
Such architecture can obtain a new square root each cycle. 
The initial latency is ‘n’ cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The longest path delay occurs in the last stage, because the 
adder/substractor increases in size as stages advance. A 
further improvement can be made if the last stages are 
pipelined, and the initial ones merged.  
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3.2 Fully-combinatorial Architecture 
This architecture is mentioned because some applications 
may need it, and in order to establish a comparison with 
the ALTERA core that does have a fully-combinatorial 
architecture. The architecture is very simple: It is the fully-
pipelined architecture without the pipelining registers. It 
only has one register at the input and one at the output. 
 
3.3 Low-cost iterative Architecture 
The size of the elements (registers, adder/subtractor) will 
be the size of the last stage of the pipelined architecture: 
 Register R � ‘n+1’ bits Register Q � ‘n’ bits 
 Adder / subtractor  � ‘n+2’ bits. 
Since all iterations are embedded in one stage, the 
reduction of Section 3.1 can not be used. 
But a simplification for this case exists: 
In the adder/subtractor: the 2 LSBs performs either ‘xy-
01’ or ‘xy+11’, ‘xy’ is the pair of D bits used at each step. 
The operation yields: ‘cba’. The truth table is shown:  
 
 
 
 
 
 
 
 
‘c’  : carry-in for the next stage of the adder/subtractor  
‘ba’: result of the operation.   
 
‘ba’ depends only on ‘xy’, but ‘c’ depends on the type of 
operation. Luckily, a conventional adder/substractor with 
carry-in (e.g. the ALTERA lpm_add_sub megafuntion) 
treats the carry-in as positive logic when adding, and as 
negative logic when subtracting [3] (this is done to reduce 
gates usage). So, for subtraction, we have to invert ‘c’ to 
assure the proper working of the adder/subtractor. The 
new truth table is: 
 
 
 
 
 
 
 
 
Now, ‘c’ and ‘ba’ depends only on ‘xy’: 
 ( ) yayxbyxc =⊕=+=  
This reduces the width of the adder/subtractor by 2 bits. 
The result ‘ba’ is obtained in parallel and the carry-in 
comes from just an OR gate. So the new adder/subtractor 
uses ‘n’ bits and has carry-in. Also, note that the MSB of 
the second operator of the adder/subtractor is ‘0’ as in the 
pipelined case. Figure 2 depicts this architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This FSM controls the 
iterative architecture. 
The process start when 
s = 1. After ‘n’ clock 
cycles, the result is 
obtained in register Q, 
done = 1, and a new 
process can be started. 
 
 
 

4. COMPUTING MORE PRECISION BITS 
 
If ‘x’ more precision bits are needed, a well-known 
technique is to attach ‘2x’ zeros to D. So, D has ‘2n+2x’ 
bits, and Q ‘n+x’ bits. This is the only way to do so in the 
ALTERA core. The core presented has ‘x’ as a parameter. 
Let define:  nq = n+x. ‘x’: number of precision bits 
 
4.1. Iterative case 
The same hardware of Figure 2 is used, except that: 
- Q uses ‘nq’ bits  - R uses ‘nq+1’ bits 
- The adder/subtractor uses ‘nq+2’ bits. 
D remains with ‘2n’ bits since ’00’ is shifted left and 
emulates the attachment of ‘2x’ zeros to D. In the FSM, ‘z’ 
starts with ‘nq-1’, the result is obtained after ‘nq’ cycles. 
 
4.2 Pipelined case (also applied to the combinatorial) 
There are ‘nq-1’ stages. The first ‘n-1’ stages are equal to 
those of Section 3.1. The last ‘x’ stages are different, since 
the new pair of D bits is ’00’, which is attached to the 
adder/subtractor; a register for ‘00’ is not needed. So, the 
number of D registers remains ‘n-1’ and its maximum size 
remains ‘2n’. At the final stage, the register Q has ‘nq’ 
bits, the register R ‘nq+1’ bits and the adder/subtractor 
‘nq+2’ bits. There are ‘nq-1’ adder/subtractors, Q and R 
registers. The hardware for the 1st and last stages is shown 
in Figure 4. Initial latency: ‘nq’ cycles. 
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5. RESULTS 
 
The core presented does not compute the remainder, since 
it is rarely used. Figure 5 depicts the core with all its 
options. Table 1 establishes a comparison between this 
core and the ALTERA core. 
 
 
 
 
 
 
 
 
 
 
 

The remainder is also dismissed in the ALTERA core in 
order to establish a fair comparison. 
 
Results are shown only for a specific device because the 
amount of results is huge with just one device and the 
results are enough to demonstrate the benefits of the core 
presented.  
 

   OUR core ALTERA core 
Type 2n x Les fmax LEs fmax 

0 48 89.56 67 86.59 
4 94 47.05 130 44.88 12 
8 156 32.90 222 28.95 
0 73 62.46 107 57.80 
4 127 39.87 186 35.37 16 
8 197 27.57 294 22.64 
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0 41 344.47 - - 
4 54 320.92 - - 12 
8 66 292.74 - - 
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4 64 281.29 - - 16 
8 75 273.52 - - 
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32 
8 117 257.27 - - 

Table 1. Final Results 
 

Device selected: Stratix EP1S10F48C5 
‘2n’ = number of bits of the radical D 
‘nq’ = n + x = number of bits of Q 
‘x’ = number of addition al precision bits 
fmax is in MHz. 

 
For every architecture  implemented and for every number 
of bits and precison bits, the core presented is always 
better in terms of both speed and resource usage than the 
ALTERA core. 
Although the improvement is not huge, it is significant, 
and as will be stated in the recommendations, the pipelined 
architecture presented can be further improved. 
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6. CONCLUSIONS 
 
• The core presented achieves high speed at minimum 

cost since it only uses an adder/subtractor unit to 
perform the operations. 

• The core is very flexible, so that the user can choose 
the best architecture that his application needs. 

• The efficiency of this core can be observed directly 
from the hardware shown, and not solely from the fact 
that the core performs better than the ALTERA’s.,  

 
7. RECOMMENDATIONS 

 
The results are better in terms of speed and resource effort 
than the ALTERA core, and an iterative version is 
presented that the ALTERA core lacks. However some 
improvements remain to be dome: 
 
• For the pipelined architecture, the pipelined applied 

resembles each step of the algorithm. However this 
can be changed: some stages can be further pipelined 
and others can be merged in order to get the 
maximum frequency of operation, since each stage 
has a different size.  It is left to the reader to establish 
the best pipelining approach. 

• The simplification for the iterative architecture can be 
applied to each stage of the pipelined architecture. It 
is left to the reader to test this improvement. 
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