
 1

A CORE DESIGN TO OBTAIN SQUARE ROOT BASED ON A NON-
RESTORING ALGORITHM

Daniel R. Llamocca-Obregón
llamocca.dr@pucp.edu.pe

Grupo de Procesamiento Digital de Señales e Imágenes - Pontificia Universidad Católica del Perú
Av. Universitaria S/N Cdra. 18 - Lima 32, Perú

Telf.: +511-6262000 Anexo 4681

ABSTRACT

A core that obtains a fixed-point square root is presented.
The algorithm used has been proposed by Li and Chu [1].
Three types of architecture are presented: a low cost
iterative version, a fully pipelined version, and a fully
combinatorial version.
The user can scale the size of the core, choose the
precision bits required and select the architecture by
simply setting parameters.
In order to prove the efficiency of the algorithm, the
algorithm is targeted to FPGAs in order to establish a
comparison with a core provided by a leading vendor:
ALTERA Corporation. The results are very encouraging:
the core consumes fewer gates, is faster and has more
options than the ALTERA core.
The core is described in VHDL, and the results were
obtained using the Quartus II 4.2 Web Edition.

1. INTRODUCTION

Square root is a basic operation in computer graphics and
scientific calculation applications such as math co-
processors, DSP algorithms, data processing and control
[4]. So, there is a great need to enhance this operation. In
1996, Lu and Chi [1] have proposed a ‘new non-restoring
sqrt algorithm’ for VLSI implementation, which has
proved to be better than the existing VLSI algorithms.
The core provides three types of architecture: iterative
(which is not provided in the ALTERA core), pipelined
and combinatorial. The remainder can be obtained using
an extra adder, but since it is rarely used, it is dismissed to
reduce the resource usage.
If the user indicates more precision bits, the core considers
this case to enhance the hardware; In the case of the
ALTERA core, this parameter can not be indicated [2],
and a well-known technique must be used to get precision
bits from this core, this means that this case is not
considered in order to enhance the architecture, and the
hardware reduction relies solely on the synthesis tool.
The next sections are divided as follows: Section 2
describes the algorithm. Section 3 presents the three
architectures. Section 4 explains the approach taken to get

more precision bits and the changes of the architectures.
Next, in the results, a detailed comparison between the
core and the ALTERA’s core is presented. Finally,
conclusions and recommendations are given.

2. A BRIEF DESCRIPTION OF THE NON-
RESTORING ALGORITHM

2.1 New non-restoring Algorithm

Radical: ‘D’ of ‘2n bits. Square root: ‘Q’ of ‘n’ bits:

D2n-1

Qn-1

D2n-2 D2n-3 D2n-4 D1 D0

Qn-2 Q0

D:

Q:

�
�
�

<+
≥

=

�
�
�

<
≥

�
�
�

=+
=−

−=
�
�
�

<
≥

−←

−
−≤=

−≤=

++++

++++

−

−
−

−−−

−−

−−

0',01'
0''

:

0',0
0',1

0,11'
1,01'

'

02

0',0
0',1

01'

''*

1,

12,
:

010

00
0

0

112121

112121

1

1
1

22121

21

2212

rifqr

rifr
r

rRremainder

end

rif

rif
Q

QifqDDr

QifqDDr
r

dodowntonkfor

rif

rif
Q

DDr

bitsknhasqthatNote

nkQQQq

nkDDDd

Define

k

k
k

kkkkk

kkkkk
k

n

n
n

nnn

k

knnk

knnk

�

�

 2

At each iteration, qk (the square root of d2k), is computed.
Since d2k = d2(k+1)D2k+1D2k, that is D2k+1D2k is attached to
d2(k+1) to form d2k, it can be inferred that D2k+1D2k must be
used to get qk. That explains the fact the algorithm attaches
D2k+1D2k to r’k+1 to form r’k in order to get qk.
The remainder at each iteration, called rk, has ‘n-k+1’ bits,
one more bit than qk [1]: rk = RnRn-1Rn-2 … Rk, k ≤ n. But
the algorithm uses an estimated remainder, called r’k, that
has ‘n-k+2’ bits, the MSB is the sign bit, which decides
the value of Qk, and it can be demonstrated that only the
‘n-k+1’ least significant bits of r’k are used to get the next
estimated remainder r’k-1. Also, in order to get the real
remainder R = r0, only the ‘n+1’ LSBs of r’0 are needed
(the MSB determines Q0). It lessens the gate count, since a
register of only ‘n-k+1’ bits is needed for r’k.

3. ARCHITECTURES

3.1 Fully-Pipelined Architecture
To develop the architecture, it is necessary to unfold the
algorithm described in Section 2.1. Therefore ‘n’ stages
with ‘n’ adders/subtractors will appear. By observing the
first iteration, a reduction is obtained:

r’n-1 � D2n-1D2n-2 – 01
Qn-1 � 1, if r’n-1 ≥ 0
Qn-1 � 0, if r’n-1 < 0

Note that r’n-1 and Qn-1 depend solely on D2n-1D2n-2, and a
truth table can be described:

As stated in Section 2.1,
‘c’ is only used to get Qn-1
and won’t be used further,
thus, it is discarded.

There is no need to perform the first subtraction and wait
one cycle, if the result from the first iteration can be
obtained directly from the first 2 MSBs of D. So the first
stage can be embedded into the second stage, and there
will be ‘n-1’ pipeline stages.
This architecture is depicted in Figure 1. The computation
of the remainder is not considered, although the core
computes it if the user wants. Note that the dotted
rectangles indicate the registers that would have appeared
if the reduction of the first stage hadn’t been performed.
Such architecture can obtain a new square root each cycle.
The initial latency is ‘n’ cycles.

The longest path delay occurs in the last stage, because the
adder/substractor increases in size as stages advance. A
further improvement can be made if the last stages are
pipelined, and the initial ones merged.

D2n-1 D2n-2

0 0

0 1

1 0

1 1

r'n-1 = cba

111

000

001

010

Qn-1

0

1

1

1

()
22

2212

22121

−

−−

−−−

=
⊕=

+==

n

nn

nnn

Da

DDb

DDcQ

2n

+/-

0 1

qn-1

4

2n-4

r'n-1

D2n-1

D2n-2

D2n-3D2n-4Qn-1

MSB
3

qn-2 r'n-2

+/-

0 1

5

2n-6

D2n-5D2n-6

Qn-2

MSB
4

qn-3 r'n-3

2

2q1 r'1

+/-

0 1

n+2

D1D0

Q1

MSB
n+1

q0 r'0

n-1

2n-2

n-1 n 2

D2n-1D2n-2

Figure 1. Pipelined sqrt

 3

3.2 Fully-combinatorial Architecture
This architecture is mentioned because some applications
may need it, and in order to establish a comparison with
the ALTERA core that does have a fully-combinatorial
architecture. The architecture is very simple: It is the fully-
pipelined architecture without the pipelining registers. It
only has one register at the input and one at the output.

3.3 Low-cost iterative Architecture
The size of the elements (registers, adder/subtractor) will
be the size of the last stage of the pipelined architecture:
 Register R � ‘n+1’ bits Register Q � ‘n’ bits
 Adder / subtractor � ‘n+2’ bits.
Since all iterations are embedded in one stage, the
reduction of Section 3.1 can not be used.
But a simplification for this case exists:
In the adder/subtractor: the 2 LSBs performs either ‘xy-
01’ or ‘xy+11’, ‘xy’ is the pair of D bits used at each step.
The operation yields: ‘cba’. The truth table is shown:

‘c’ : carry-in for the next stage of the adder/subtractor
‘ba’: result of the operation.

‘ba’ depends only on ‘xy’, but ‘c’ depends on the type of
operation. Luckily, a conventional adder/substractor with
carry-in (e.g. the ALTERA lpm_add_sub megafuntion)
treats the carry-in as positive logic when adding, and as
negative logic when subtracting [3] (this is done to reduce
gates usage). So, for subtraction, we have to invert ‘c’ to
assure the proper working of the adder/subtractor. The
new truth table is:

Now, ‘c’ and ‘ba’ depends only on ‘xy’:
 () yayxbyxc =⊕=+=
This reduces the width of the adder/subtractor by 2 bits.
The result ‘ba’ is obtained in parallel and the carry-in
comes from just an OR gate. So the new adder/subtractor
uses ‘n’ bits and has carry-in. Also, note that the MSB of
the second operator of the adder/subtractor is ‘0’ as in the
pipelined case. Figure 2 depicts this architecture.

This FSM controls the
iterative architecture.
The process start when
s = 1. After ‘n’ clock
cycles, the result is
obtained in register Q,
done = 1, and a new
process can be started.

4. COMPUTING MORE PRECISION BITS

If ‘x’ more precision bits are needed, a well-known
technique is to attach ‘2x’ zeros to D. So, D has ‘2n+2x’
bits, and Q ‘n+x’ bits. This is the only way to do so in the
ALTERA core. The core presented has ‘x’ as a parameter.
Let define: nq = n+x. ‘x’: number of precision bits

4.1. Iterative case
The same hardware of Figure 2 is used, except that:
- Q uses ‘nq’ bits - R uses ‘nq+1’ bits
- The adder/subtractor uses ‘nq+2’ bits.
D remains with ‘2n’ bits since ’00’ is shifted left and
emulates the attachment of ‘2x’ zeros to D. In the FSM, ‘z’
starts with ‘nq-1’, the result is obtained after ‘nq’ cycles.

4.2 Pipelined case (also applied to the combinatorial)
There are ‘nq-1’ stages. The first ‘n-1’ stages are equal to
those of Section 3.1. The last ‘x’ stages are different, since
the new pair of D bits is ’00’, which is attached to the
adder/subtractor; a register for ‘00’ is not needed. So, the
number of D registers remains ‘n-1’ and its maximum size
remains ‘2n’. At the final stage, the register Q has ‘nq’
bits, the register R ‘nq+1’ bits and the adder/subtractor
‘nq+2’ bits. There are ‘nq-1’ adder/subtractors, Q and R
registers. The hardware for the 1st and last stages is shown
in Figure 4. Initial latency: ‘nq’ cycles.

xy

00
01

cba
cba = xy + 11

011
100

xy

00
01

cba

111
000

cba = xy - 01

00
01

101
110

00
01

001
010

xy

00
01

cba
cba = xy + 11

011
100

xy

00
01

cba

011
100

cba = xy - 01

00
01

101
110

00
01

101
110

+/-

0

n

MSB
n-2

n-2

2

2

n-2

R

n-1

Q
x y

cin

00
2

D

Figure 2. Low-cost iterative sqrt

D_i

R ← 0, D ← D_i, z ← n-1

Q ← 0

z ← z - 1

resetn = 0
S1

S2

si no

1

Figure 3. iterative sqrt's FSM

0

done ← 1

s

z = 0

 4

5. RESULTS

The core presented does not compute the remainder, since
it is rarely used. Figure 5 depicts the core with all its
options. Table 1 establishes a comparison between this
core and the ALTERA core.

The remainder is also dismissed in the ALTERA core in
order to establish a fair comparison.

Results are shown only for a specific device because the
amount of results is huge with just one device and the
results are enough to demonstrate the benefits of the core
presented.

 OUR core ALTERA core
Type 2n x Les fmax LEs fmax

0 48 89.56 67 86.59
4 94 47.05 130 44.88 12
8 156 32.90 222 28.95
0 73 62.46 107 57.80
4 127 39.87 186 35.37 16
8 197 27.57 294 22.64
0 213 28.76 347 23.18
4 299 20.54 490 17.36 FU

LL
Y

CO
M

BI
NA

TO
RI

AL

(U
nf

ol
de

d)

La
te

nc
y

cy
cle

s:
 1

32
8 401 16.15 662 13.50
0 82 317.86 105 273.45
4 158 273.97 199 252.02 12
8 266 279.17 337 246.49
0 142 301.30 182 243.66
4 234 274.80 300 247.59 16
8 358 266.05 462 245.64
0 542 267.02 690 227.01
4 698 265.82 904 231.80

FU
LL

Y
PI

PE
LI

NE
D

(U
nf

ol
de

d
pi

pe
lin

ed
)

La
te

nc
y

 c
yc

le
s:

 1

32
8 886 258.00 1162 224.77
0 41 344.47 - -
4 54 320.92 - - 12
8 66 292.74 - -
0 50 316.46 - -
4 64 281.29 - - 16
8 75 273.52 - -
0 91 274.50 - -
4 105 268.96 - -

IT
ER

AT
IV

E
(F

ol
de

d
re

cu
rs

ive
)

La
te

nc
y

cy
cle

s:
 n

 +
 x

32
8 117 257.27 - -

Table 1. Final Results

Device selected: Stratix EP1S10F48C5
‘2n’ = number of bits of the radical D
‘nq’ = n + x = number of bits of Q
‘x’ = number of addition al precision bits
fmax is in MHz.

For every architecture implemented and for every number
of bits and precison bits, the core presented is always
better in terms of both speed and resource usage than the
ALTERA core.
Although the improvement is not huge, it is significant,
and as will be stated in the recommendations, the pipelined
architecture presented can be further improved.

q1 r'1

+/-

0 1

nq+2

'00'
Q1

MSB
nq+1

q0 r'0

nq-1

nq-1

2n

+/-

0 1

qnq-1

4

2n-4

r'nq-1

D2n-1

D2n-2

D2n-3D2n-4Qnq-1

MSB
3

qnq-2 r'nq-2

2n-2

D2n-1D2n-2

nq

Figure 4. Pipelined sqrt with more precision bits

SQRT
D 2n n+x Q

n x f

n : half the bits of D
x : precision bits

f : modeP
ar

am
et

er
s

1 = fully combinatorial
2 = fully pipelined
3 = iterative version

Figure 5. CORE presentation

 5

6. CONCLUSIONS

• The core presented achieves high speed at minimum

cost since it only uses an adder/subtractor unit to
perform the operations.

• The core is very flexible, so that the user can choose
the best architecture that his application needs.

• The efficiency of this core can be observed directly
from the hardware shown, and not solely from the fact
that the core performs better than the ALTERA’s.,

7. RECOMMENDATIONS

The results are better in terms of speed and resource effort
than the ALTERA core, and an iterative version is
presented that the ALTERA core lacks. However some
improvements remain to be dome:

• For the pipelined architecture, the pipelined applied

resembles each step of the algorithm. However this
can be changed: some stages can be further pipelined
and others can be merged in order to get the
maximum frequency of operation, since each stage
has a different size. It is left to the reader to establish
the best pipelining approach.

• The simplification for the iterative architecture can be
applied to each stage of the pipelined architecture. It
is left to the reader to test this improvement.

7. REFERENCES

[1] Y. Li and W. Chu, “A New Non-Restoring Square

Root Algorithm and Its VLSI Implementations”, Proc.
Of 1996 IEEE International Conference on Computer
Designs: VLSI in Computers and Processors, Austin,
Texas, USA, October 1996, pp538-544.

[2] ALTERA Corporation, “altsqrt Megafunction User
Guide”, v. 1.0, September 2004.

[3] Brown & Vranesic. Fundamentals of Digital Logic
with VHDL Design, McGraw Hill, 2000..

[4] U. Meyer – Baese, Digital Signal Processing with
Field Programmable Gate Arrays: Springer-Verlag
Berlin Heidelberg, May 2001,

