
EFFICIENT DESIGN OF A FFT/IFFT-64 MODULE ON ASIC

A. Millán, M. J. Bellido, J. Juan, P. Ruiz-de-Clavijo, D. Guerrero, E. Ostúa, and J. Viejo ∗

Instituto de Microelectrónica de Sevilla - Centro Nacional de Microelectrónica
Av. Reina Mercedes, s/n (Edificio CICA) - 41012 Sevilla (Spain)

Tel.: +34 955056666 - Fax: +34 955056686
http://www.imse.cnm.es

Departamento de Tecnologı́a Electrónica - Universidad de Sevilla
Av. Reina Mercedes, s/n (E. T. S. Ingenierı́a Informática) - 41012 Sevilla (Spain)

Tel.: +34 954556161 - Fax: +34 954552764
http://www.dte.us.es

{amillan,bellido,jjchico,paulino,guerre,ostua,julian}@dte.us.es

ABSTRACT

In this work we present the VHDL implementation of a
FFT/IFFT-64 module. This implementation: (a) is rela-
tively quick and (b) occupies a limited amount of area. The
module operation is based on a radix-8 butterfly and it al-
lows the calculation of a complex 64-element FFT/IFFT
in 290 clock cycles providing a precision of 98.8% on the
magnitude of the output samples. Area saving is achieved
mainly by using a RAM macrocell in order to store interme-
diate calculations. The synthesis process has been carried
out on ASIC using AMS 0.35 µm technology and reaching
the place & routing level in the test process.

1. INTRODUCTION

The work that is presented in this paper is included in-
side the design and implementation of a modem. This mo-
dem bases its operation on the Orthogonal Frequency Divi-
sion Multiplexing (OFDM) modulation/demodulation sys-
tem [1]. OFDM transmits data by using a set of narrow
bandwidth carriers. The frequency spacing of the carriers
is chosen in such a way that the carriers are orthogonal in
order to avoid interference among them. For both processes
of modulation and demodulation, an OFDM modem needs
to calculate the Discrete Fourier Transform of the data (in
both direct and inverse ways). For this, a module that im-
plements the FFT (Fast Fourier Transform) becomes an es-
sential part of the system.

∗This work has been partially supported by the MCYT META project
TEC 2004-00840/MIC and the MECD/SEEU/DGU project PHB2002-
0018-PC of the Spanish Government.

To be precise, the implemented system processes 64-
sample complex symbols using 26-bit data (13 bits for the
real part and 13 bits for the imaginary one). So, the dynamic
range at the module input covers from −4096 up to 4095
(each part). Actually, this range represents values between
−1 and 1. However, the FFT/IFFT module works with an
internal 38-bit precision (19 bits for each part) in order to
minimize the precision loss in both the internal operations
and the final transform result. In any case, as the system
works with 26-bit precision, the module output is truncated
(being lost the six less significant bits of each part).

In a previous work [2], we have shown a first approach of
the implementation of the system on FPGA. However, due
to cost requirements, we have had to develop a new design.
These requirements are:

• The system is going to be implemented on ASIC (in-
stead of FPGA).

• The calculation time of the design keeps as a critical
point due to timing restrictions in the whole modem.

• Now, the area occupied by the FFT/IFFT module be-
comes critical too, because the cost of the ASIC de-
pends on the amount of used area. For this, we have
been required to employ a RAM macrocell instead of
a register set. As we will show, this reduces the area
used significantly. However, it is a obstacle to the
timing requirements because this type of RAM needs
two cycles per access (a register set requires one cycle
only).

1

Fig. 1: Interface of the FFT/IFFT module.

So, due to these requirements we have to change the
whole design in order to adapt it to the new specifications.

The organization of the paper is as follows: in Sect. 2
the interface and the internal structure of the module are
presented; Sect. 3 shows the operation of the module; in
Sect. 4, we present the design and synthesis details; Sect. 5
presents the tests we have carried out on the module; finally
we will finish with the main conclusions of this work.

2. INTERFACE AND INTERNAL STRUCTURE OF
THE FFT/IFFT MODULE

The module interface designed is shown in Fig. 1. Signals
CLK, CLEAR, and RSTz are used to provide the module
with clock, synchronous clear and asynchronous reset re-
spectively. Signals INIT FFT and INIT IFFT indicate to
the module in what way the transform must be calculated
(direct or inverse way). Data buses DATA IN FFT and
DATA OUT FFT (26-bit width) are the module data input
and output (the 13 more significant bits store the real part
and the 13 less significant bits the imaginary one). Sig-
nals AD, CS, WE, DI REAL, DI IMAG, DO REAL, and
DO IMAG conform the RAM interface. Finally, signal
VALID FFT is generated by the module indicating that it
has finished the transform calculation (Fig. 2).

Due to timing restrictions, it was required the transform
to be calculated in less than 300 cycles. So, instead of
choosing the classical structure based on a 2-point butter-
fly [3] (what would have required 384 cycles for the whole
transform; since its order is n log

2
n), it was necessary to

choose a solution that maximizes the parallelism. The im-
plemented solution is the one proposed in [4] and it is based
on using a radix-8 butterfly [5, 6]. At a first approach, this
butterfly allowed the calculation of the transform in 16 cy-
cles only. However, this implementation enlarged too much
the connection cost of the design (since it is necessary to ac-
cess 16 data from RAM in parallel, leading to a data bus for
the RAM of 304-bit width).

So, due to the requirements explained at the previous sec-
tion, we have to develop a complex timing structure in order

Fig. 3: Internal structure of the FFT/IFFT module. Conjugators
operate in the IFFT case only.

Fig. 4: Internal structure of the radix-8 butterfly.

to minimize the area while maintaining the maximum time
restriction for the calculation.

The internal structure of the FFT/IFFT module is rep-
resented in Fig. 3. The most important component of the
module is the radix-8 butterfly that performs an 8-element
DFT in parallel. For it, the radix-8 is completed with two
8-register sets at its input and output data buses. Its im-
plementation follows the structure proposed in [5] and it is
shown in Fig. 4.

Around this main element, there are several components
that allow to complete the operation of the system. The
objective of each component is the next:

• CONJ: Performs the conjugate operation of the com-
plex input data.

• RAM: Stores the intermediate calculations. Actually,
this element is external to the module due to its macro-
cell nature.

• ROM: This component supplies the precalculated
twiddle values (see next section).

• TWIDDLE: Multiplies the radix-8 complex data out-
put and the corresponding twiddle value.

• CONTROL: It is the control unit of the module and
coordinates the operation of all the components.

3. MODULE OPERATION

The module operation follows the algorithm proposed in
[4]:

2

0 0

X 1149

X 364

0

0

20 us 22 us 24 us 26 us 28 us

/test/rstz

/test/clear

/test/clk

/test/dpram_csb

/test/dpram_adb 0 0

/test/u_sincro_ofdm/u_control/init_fft

/test/u_sincro_ofdm/u_fft/data_in_fft_real X 1149

/test/u_sincro_ofdm/u_fft/data_in_fft_imag X 364

/test/u_sincro_ofdm/u_phase/init_phase

/test/u_sincro_ofdm/u_fft/data_out_fft_real 0

/test/u_sincro_ofdm/u_fft/data_out_fft_imag 0

18880 ns
28192 ns

9312 ns

Entity:test Architecture:comportamiento Date: Wed Apr 14 17:13:16 CEST 2004 Row: 1 Page: 1

Fig. 2: Functional simulation. The calculation process starts when signal INIT FFT becomes active. When the FFT results are ready,
the module activates signal VALID FFT (called INIT PHASE by the next module in the modem). The whole process takes 9312 ns (ca.
290 cycles).

1. Consider that input data are stored in an 8×8 matrix
A as shown in (1); the first eight data are stored in the
first column (ai1 elements).

A =









a11 a12 · · · a18

a21 a22 · · · a28

.
a81 a82 · · · a88









(1)

2. Perform the DFT of each row of A and store the re-
sult on the row itself (this is performed by the radix-8
butterfly).

3. Multiply each element of A by the corresponding
twiddle (w). According to (2), twiddle values are into
the range [-1, 1] (each part). So, the system works
with their normalized equivalents in the range [-4096,
4095]. Actually, this step is performed at the same
time that the previous one by multiplying each element
before storing it on RAM.

4. Perform the DFT of each column of A and store the
result on the column itself (performed by the butter-
fly).

wij = exp

(

−j
2π

N
(i− 1)(j − 1)

)

(2)

5. The final result is on matrix A considering the first
eight output data to be at the first row (a1i elements).

So, the operation can be summarized in four logical
stages: (1) data input, step 1; (2a) first butterfly pass, steps
2 and 3; (2b) second butterfly pass, step 4; and (3) data
output, step 5.

Cycle
0 16 128 144 146 162 274 290

(1) Data input
(2a) 1st butt.

(2b) 2nd butt.
(3) Data output

Fig. 5: FFT/IFFT module operation stages. Stages 2a and 2b can
not be overlapped because the RAM data bus does not allow si-
multaneous read and write operations. Also, it is necessary to
stablish a little wait stage of two cycles between them for syn-
chronization purposes.

However, due to the hard timing requirements and the 2-
cycle access RAM we have, these four logical stages have
to be overlapped in order to minimize the total calculation
time. So, the system operation is the one shown in Fig. 5.
On the one hand, stages 1 and 2a are performed almost si-
multaneously. Now, input data are required to arrive in an
interlaced way in order to dispose of the x1i elements first.
On the other hand, stages 2b and 3 are overlapped too. Now,
output data is given in an interlaced way but this fact does
not affect the operation of the next module in the modem.

4. DESIGN AND SYNTHESIS

The design of the module has been carried out using VHDL
language and following a top-down methodology. For the
whole RTL design we have used ModelSim SE PLUS
v5.6d. In the first stage, we have designed the architec-
ture of the module (Fig. 3). Next, we have developed the
VHDL code of the module at the RT level. In this sense,
it is important to denote how we have adapted the inter-

3

face needed to a high-level developing scheme but keeping
it synthesizable at the logic level. So, the interface needed
for the FFT/IFFT module was the next:

entity fft is
port(

DATA_IN_FFT : in std_logic_vector
(2*(WIDTH-6)-1 downto 0);

DATA_OUT_FFT : out std_logic_vector
(2*(WIDTH-6)-1 downto 0);

INIT_FFT : in std_logic;
INIT_IFFT : in std_logic;
VALID_FFT : out std_logic;
CLK : in std_logic;
CLEAR : in std_logic;
RSTz : in std_logic;
CS : out std_logic;
WE : out std_logic;
AD : out std_logic_VECTOR

(5 downto 0);
DI_REAL : out std_logic_VECTOR

(WIDTH-1 downto 0);
DI_IMAG : out std_logic_VECTOR

(WIDTH-1 downto 0);
DO_REAL : in std_logic_VECTOR

(WIDTH-1 downto 0);
DO_IMAG : in std_logic_VECTOR

(WIDTH-1 downto 0)
);

end fft;

However, a very important objective was to obtain a
VHDL code that was defined at a high-level programming
style. This fact has two main advantages because it makes
easier: (a) the debug process (b) the future adaptation of the
system to a new specification (e.g. different data width). In
order to achieve this, the module actually has two main en-
tities: (a) FFT, that implements the interface to the external
modules and (b) FFTCORE, that implements the module
operation itself. So, it allows the FFTCORE entity to have
a high-level interface:

entity fftcore is
port(

clk : in std_logic;
rst : in boolean;
clr : in boolean;
init : in boolean;
ifft : in boolean;
idb : in complex;
done : out boolean;
odb : out complex;
ram_ab : out address_bus;
ram_we : out boolean;
ram_cs : out boolean;
ram_idb : out complex;
ram_odb : in complex

);
end fftcore;

Types COMPLEX and ADDRESS BUS are defined as:

type complex is record r, i:
signed(WIDTH-1 downto 0); end record;

type address_bus is record i, j:
integer range 0 to 7; end record;

All modules are combinational mainly (except for the
case of the CONTROL UNIT). So, the programming style
has been very modular to minimize the cost of the logic syn-
thesis proces . Due to the complex timing structure of the

Table 1: Area occupied for each design section
FFT Register RAM

Area core (µm2) set (µm2) (µm2)
Combinational 1.342 0.350 -
Noncombinat. 0.357 1.508 -
Net interconnect 0.334 0.320 -
Total area 2.033 2.178 0.614

FFT/IFFT module. Development of the CONTROL UNIT
has been complex too. So, in order to guarantee the cor-
rect operation of the module and to make easier the de-
bug process, we have implemented the corresponding Fi-
nite State Machine (FSM) according to the canonic struc-
ture described in [7]. This structure is based on using two
functions: (a) the first one determines the next state of the
FSM depending on the current state and the input data and
(b) the second one describes the outputs or commands of
the FSM in a similar way.

In the second stage, we have performed the logic synthe-
sis of the module. For this task, we have used Design An-
alyzer v2001.08 on AMS 0.35 µm technology (CSD pro-
cess). Also, we have verified the operation for the required
work frequency of 42 MHz. This process has become very
difficult because the area restrictions. The main point in
saving area is the internal calculations store (Table 1). In a
first approach, we employed a 64-register set; however this
design enlarge too much the interconnection area (covering
a total area of 4.211 µm2). In a second approach, we de-
cided to use a RAM macrocell. However, the minimum
RAM macrocell that AMS provides is 128-word length.
So we had to waste the half of the capacity. Altough this
solution was better than the previous one, we thought it
was mandatory to make good use of the whole area. So,
we designed a 64×38 single-port RAM from the 128×19
double-port RAM that AMS provides (covering a total area
of 2.647 µm2 and saving about 37%).

Finally, in the third stage, we have performed the lay-
out synthesis (Fig. 6) by using Silicon Ensemble v5.4. The
layout final total area is 3.028 µm2. The underestimation
produced is due to two main reasons: (a) the previous es-
timation at the logic synthesis level is usually lower than
the final one and (b) the previous estimation did not include
the interconnection cost between the FFT module and the
RAM macrocell.

5. TESTS

The debug process we have followed consists of providing
the designed module with a set of signals (actually used on
the system) covering SNRs from 5 dB up to 30 dB.

This test bench has been applied at three levels. At the
first test stage we have verified the system at a functional

4

Fig. 6: FFT/IFFT module layout generated with Silicon Ensemble v5.4 on AMS 0.35 µm technology (CSD process). We can observe the
RAM macrocell at the bottom right.

level. Also in this stage we have compared the results with
the ones provided by the MATLAB system model in or-
der to estimate the precision of the module. At the second
test stage, we have synthesized the module and tested its
operation considering the gate delay by post-synthesis sim-
ulation. Finally, at the third test stage, we have obtained the
layout of the whole design and tested its global operation.

About the result error, it is lower than one bit of the out-
put data. Taking into account that output data is truncated
(loosing the six less significant bits), the maximum quanti-
zation error is of 26 levels of a total of 219. It produces a
maximum relative error of 1.2%. So, the precision of the
system is 98.8%.

6. CONCLUSIONS

In previous sections, we have presented the VHDL imple-
mentation of a FFT/IFFT-64 module on ASIC. This imple-
mentation is relatively quick by performing a complex 64-
element FFT in 290 clock cycles (at a clock frequency of
42 MHz). Also, the design occupies a limited amount of
area: it needs 2.647 µm2 using AMS 0.35 µm technology.
Area saving is achieved mainly by using a RAM macro-
cell in order to store intermediate calculations. Finally, the
test process has reached the place & routing level and the
precision of the FFT result is of 98.8%.

REFERENCES

[1] Weinstein, S.B., Ebert, P.M.: Data transmission
by frequency-division multiplexing using the discrete
Fourier transform. IEEE Transactions on Communica-
tions 19(5) (1971) 628–634

[2] Millán, A., Bellido, M.J., Juan, J., Ruiz-de-Clavijo,
P., Guerrero, D., Ostúa, E.: Diseño eficiente de un
módulo FFT/IFFT sobre FPGA. Proc. III Jornadas
sobre Computación Reconfigurable y Aplicaciones
(JCRA) (September 2003) 107–114

[3] Smith, S.W.: The Scientist and Engineer’s Guide to
Digital Signal Processing, 2nd ed. California Technical
Publishing, San Diego, California (1999)

[4] Bailey, D.H.: FFTs in External or Hierarchical Mem-
ory. NAS Technical Report RNR-89-004 (1989)

[5] Widhe, T., Melander, J., Wanhammar, L.: Design of
efficient radix-8 butterfly PEs for VLSI. IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS97),
Vol. 3. Hong Kong (1997) 9–12

[6] Li, W., Wanhammar, L.: Efficient radix-4 and radix-8
butterfly elements. NorChip99. Oslo (1999)

[7] Bergé, J.M., Fonkoua, A., Maginot, S., Rouillard, J.
VHDL Designer’s Reference. Kluwer Academic Pub-
lishers (1992)

5

