
 1

A SCALABLE DIGITAL ARCHITECTURE OF A KOHONEN NEURAL

NETWORK

Andrés E. Valencia, Jorge A. Peña and Mauricio Vanegas.

Universidad Pontificia Bolivariana,

Medellín, Colombia

andrez_valencia@yahoo.com, jorge.pena@alari.ch, mvanegas@upb.edu.co

ABSTRACT

Kohonen self-organizing feature maps are unsupervised

learning neural networks that categorize or classify data.

Efficient hardware implementation of such neural

networks requires the definition of a certain number of

simplifications to the original algorithm. In particular,

multiplications should be avoided by means of

simplifications in the distance metric, the neighborhood

function and the learning parameter values.

In many applications, a scalable solution becomes

necessary due to the limited memory resources available in

many embedded platforms. In this paper, a scalable

Kohonen map called Local Winner-Take- All (LWTA)

design with Minkowski norm L∞ and an exponential

neighboring function is defined, and its hardware

architecture is presented. The scalability of the net is

achieved via a Local Winner –Take- All approach. Results

of VHDL simulations as well as synthesis on an FPGA of

the proposed architecture demonstrate satisfactory

functionality of such architecture.

1. INTRODUCTION

Artificial neural networks are parallel computational

models comprised of densely interconnected adaptive

processing units (neurons), able to learn a static map

(supervised learning) or to classify and categorize the input

space (unsupervised learning) from an input data [1]. A

Kohonen’s self-organizing feature map (Kohonen’s

SOFM) is an artificial neural network of unsupervised

learning that captures the topology and probability

distribution of input data [2].

Most of the neural networks applications have used

simulations on conventional single-processor machines.

The possibility of parallel processing and short operation

times has encouraged the implementation of hardware

neural networks [3], [4], [5], [6]. Kohonen’s SOFM has not

been the exception, and there are several implementations

in analog [7] as well as digital circuits [8] [9]. Generally,

digital implementations have been more successful

because of their lesser vulnerability to noise and their

higher scale of integration when is compared with their

analog counterparts, additionally several laboratories

currently work strongly on reconfigurable circuits in which

this kind of digital architectures will be suitable[10].

In many applications, the data load can increase at an

incredible rate and overcome the resources of the system.

Moreover due to the limited memory resources available in

many embedded platforms, such as mobile terminals [11],

a scalable solution becomes necessary.

In [12] we proposed a very simple but efficient digital

architecture of a Kohonen’s SOFM. In this work, we add a

new feature to this design in order to make it more easily

scalable. The idea is to be able to construct a larger map by

connecting similar chips (e.g. FPGAs implementing a

certain number of interconnected neurons) without the

necessity to change the whole architecture.

2. KOHONEN’S SELF ORGANIZING FEATURE

MAPS

A Kohonen’s self-organizing feature map is an

unsupervised learning neural net that captures the topology

and probability distribution of input data.

Its architecture consists of an array of units or neurons with

a fixed position Ri within the map and a variable n-

dimensional weight Wi , where n is the dimensionality of

input patterns.

 2

The weights of the neurons are updated each time a new

input pattern is presented. The magnitude of the change of

the weight of the neuron depends on the topological

proximity to the winner neuron, whose index i* is given

by:

),(minarg* k

iii xwdi =

When the winner neuron is found, the weight of the i-th

neuron is updated according to:

))(,(* io

k

iiioiioi wxrrwwww −Φ⋅+=∆+= ρ

where ρ is the learning rate and Ф(ri, ri*) is a

neighborhood function.

3. THE PROPOSED KOHONEN’S SOFM

As described in [12], the LWTA design is based on the

idea to simplify the algorithm of self organizing feature

maps due to hardware aspects in order to minimize the

necessary chip area and thus to maximize the number of

processing unit per FPGA.

First the Chessboard distance is used instead of the

Euclidean distance.

||max),(iii yxyxL −=∞

where L∞(x,y) is the distance metric between vectors x and

y and xi (yi) is the i-th component of the vector x (y).

Therefore no multipliers are necessary to calculate the

distance. Secondly the values of the learning rate are

restricted to the set {1, ½, ¼ ... (½}
α
}. Finally a discrete

exponential neighborhood function is defined. With the

proposed simplifications we can reformulate the weight

update formula:

≠−

=−

=∆
++

*

),(

*

)(
2

1

)(
2

1

*

iisiwx

iisiwx

w

io

k

rrd

io

k

i
ii βα

α

Therefore, ∆wi is obtained simply by multiplying (x
k
 -wi0)

by a power of ½, which can be easily implemented with a

shifter, avoiding the necessity of multipliers (expensive

logic) in the circuit.

4. HARDWARE DESIGN

A one-dimensional Kohonen map of 10 units is designed;

the system is capable of handling a two-dimensional input

patter with 8-bit resolution.

4.1. The Network

The network is designed to work in parallel and to

optimize execution speed. Each neuron is defined as a

building block that processes data in an independently

fashion. The proper behavior of the net as an aggregation

of these building blocks is guaranteed by one “global”

control block, the parameter scheduler. Consequently,

when several FPGAs are connected in the LWTA design,

the learning rate signal, α, the neighborhood width signal,

β, and the reset signal must be connected as well as the

signals downout and downin with the signals upin and

upout of the new FPGA (Fig. 1).

4.2. The Neuron

A Kohonen’s neuron is composed of a Chessboard

distance calculation block and a weight update block (Fig.

2). Each neuron includes four 8-bit and three 4-bit adders,

one comparator and two shifters.

In order to assure a proper synchronization of the digital

neuron, the Chessboard distance calculation block operates

on falling edges and the weight updating block on rising

edges of a clock signal.

 3

Fig. 1. Network architecture of the LWTA design.

The Parameter Scheduler

The parameter scheduler updates the learning rate

parameter α and the neighborhood width parameter β

incrementing them from an initial value of 0 to a final

value determined beforehand. Basically, this block consists

of two counters (one for each parameter) registers and a

combinatorial logic to determine the set of time steps at

which the parameters will be incremented.

4.4. The Winner -Take- All (WTA) Block

The WTA blocks in the LWTA design has two tasks. First,

when reset is pressed, the neuron 1 sends a “1”, the

neuron’s position in the map, to the neuron 2 throughout

signal downout. Afterwards, the neuron 2 sends a “2”

throughout signal downout to neuron 3, and so on, until all

the neurons know their position in the map (Fig. 4a).

The second task of the WTA block is to find the minimum

of the distances between all the neurons and the input

pattern. Each neuron calculates the distance, Dj, on a

falling edge, afterward the neuron’s j WTA block send the

distance Dj and the position j to the adjacent neurons

throughout signals upout and downout, then the WTA

block of the neurons j+1 and j-1 receive the distance and

the position throughout the signals upin and downin, and

compares the distance with the proper value (Fig. 3).

Fig. 2. Neuron’s architecture

 4

For example, if neuron 4 has a distance of 100, neuron

5 has a distance of 176 and neuron 3 has a distance of

65 (Fig. 4b), then the output of the WTA blocks are 4

and 100 (100 < 176) and 3 and 65 (65 < 100) (Fig. 4c).

Note that the signal downin is the concatenation of j-1

and Dj-1 and signal upin is the concatenation of j+1 and

Dj+1 (Fig. 3).

Fig. 3. Winner -take- all block of LWTA design.

Fig. 4. Behavior of the LWTA design (a) in reset (b) at the beginning of the comparison (c) at the end of the comparison.

5. EXPERIMENTAL SETUP AND RESULTS

The experimental setup consists of two parts: the VHDL

simulation of a Kohonen map for a simple clustering task

and the synthesis of the net on an FPGA.

5.1. Behavioral Simulation

The proposed hardware was described in VHDL and then

simulated using the Modelsim Simulator XE II 5.7g of

Mentor Graphics [13] for two simple clustering tasks.

The first input data consisted of 1000 points randomly

generated in the xy plane between lines with slopes 1 and

intersections of +25 and -25.

The net was trained for 18000 iterations (time steps). The

parameters α and β were both initialized at zero, while the

neuron weights were initialized at (125, 125). The

parameter α was incremented by one at time steps 4000,

8000 and 12000, and the parameter β at time steps 2000,

6000, 10000 and 14000.

Fig. 5 shows graphs of the input data and the weight

vectors for different phases of the algorithm. It can be seen

how the units arrange themselves so as to follow the

probability distribution of input vectors. Furthermore, the

weight vectors are finally ordered according to their

mutual similarity, so that neurons close to each other in the

linear array correspond to neurons with close weights in

the input pattern space, as must be the case of a well

trained Kohonen net.

 5

Fig. 5. Input data for a simple clustering task (small dots)

and weight vectors (circles) in the input space: (a) Iteration

0, (b) Iteration 1000, (c) Iteration 2000, (d) Iteration 3000,

(e) Iteration 12000, and (f) Iteration 18000

The histogram of Fig. 6 shows for each neuron the number

of times it became the winner unit of the net. At the end of

the run, each neuron has almost the same chance to win,

which assures that the neurons have covered the input

space following the probability distribution of the input

data.

Fig. 6. Histogram of winning events: (a) Iteration 0, (b)

Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, (e)

Iteration 12000, (f) Iteration 18000

The second input data is an Archimedean spiral with a

polar equation given by:

nr
1

αθ=

Where r is the radial distance, θ is the polar angle and n is

the constant which determines how tightly the spiral is

“wrapped”.

The input data consisted of 1000 points generated with a

radial distance of 30 and a constant of 2. The net was

trained for 18000 iterations. The parameters α and β were

both initialized at zero, while the neuron weights were

initialized at (125, 125). The parameter α was incremented

by one at time steps 4000, 8000 and 12000, and the

parameter β at time steps 2000, 6000, 10000 and 14000.

Fig. 7 shows graphs of the input data and the weight

vectors for different phases of the algorithm.

Fig. 7. Input data for a simple clustering task (small dots)

and weight vectors (circles) in the input space: (a) Iteration

0, (b) Iteration 1000, (c) Iteration 2000, (d) Iteration 3000,

(e) Iteration 12000, and (f) Iteration 18000

The histogram of Fig. 8 shows for each neuron the number

of times it became the winner unit of the net.

Note that a common property in the SOFMs is a border

aberration effect that causes a slight contraction of the map

and a higher density of weights at the borders. This

aberration is cause by the “pulling” by the units in the map

thus the asymmetric behavior of the histogram.

 6

Fig. 8. Histogram of winning events: (a) Iteration 0, (b)

Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, (e)

Iteration 12000, (f) Iteration 18000

5.2. Synthesis

The description of a one-dimensional LWTA design

composed of 10 units with chessboard metric and

exponential neighboring function was synthesized on an

FPGA in order to determine the suitability of a real

implementation of the proposed hardware. An FPGA is an

array of logic cells whose functionality and interconnection

can be programmed by a configuration bit stream [14]. We

used a Spartan III xc3s200ft256 from Xilinx Corp. [15]

which has a maximum capacity of implementing 200000

logic gates. This FPGA has 24 x 20 configurable logic

blocks (CLBs). The Kohonen map used 1357 slices (70%

of the whole FPGA). It must be said, however, that no

attempt was made to optimize the synthesis.

The maximal xc3s200’s pin-to-pin delay was 5.5 ns. Given

that the processing time per input vector is one clock cycle

and that both, the rising and the falling edge of the clock

signal are being used, the system could process a new input

vector every 11 ns.

6. A Comparison of resources of both designs

The LWTA design and the GWTA design proposed in [12]

are compared by measuring the chip area (slices, flip flop

slices and look up tables) and speed execution (maximum

pin delay).

Designs GWTA LWTA

Slices 1126 1357

F.F. Slices 440 545

LUTs 1691 2141

Maximum pin

delay (nseg)

5.454 5.5

Although both designs process input data in one clock

cycle, the LWTA design is not as efficient as the GTWA

design in term of silicon area and speed execution. This

difference is due to the conception of the WTA block.

The GWTA design finds the minimum distance between

the weights of the neurons and the input pattern by

defining a global block, the WTA block (Fig, 9). However,

when several FPGAs are connected, each FPGA has a part

of the global map thus the existence of this block creates a

problem.

Therefore, in a Kohonen’s SOFM of n neurons, the WTA

block of the GWTA design has n-1 multiplexors and n-1

comparators (Fig. 9), however in the LWTA design, the

WTA block has 2 multiplexors and 2 comparators per

neuron (Fig. 4) for a total of 2*n multiplexors and 2*n

comparators.

In the GWTA design, the WTA global is composed of

comparators and multiplexors arranged in a cascade

configuration (Fig. 9).

Fig. 9. Winner take all block of GWTA design. For the

sake of simplicity, a 4-neuron map is assumed.

Nevertheless The Spartan x3c400 can have 30 neurons of

the GWTA design but the LWTA design can handle the

same amount of units in six Spartan x3c50 and can be

easily scale by adding more FPGAs.

 7

7. Conclusions and Future Work

A digital scalable hardware design of a Kohonen map has

been presented. Though very simple when compared with

the original algorithm, the proposed model succeeds in

retaining the main features of the network, allowing data

clustering with topology preservation.

To achieve scalability, the LWTA design “distributes” the

Winner -Take- All block by spreading the “global”

information locally, without the need of a central control

unit, making plausible the interconnection of several

FPGAs, each one configure with a part of the map, to

implement a large map that otherwise would be impossible

to implement in a single chip.

Consequently, in the LWTA design, each neuron is

connected only with the neighbor neurons and all the

neurons work independently.

The GWTA design has been used successfully on image

segmentation problem and the LWTA design is taken into

consideration for the image segmentation as well as

perception of mobile robot.

8. References

1. M. Hassoun, “Fundamental of artificial neural

networks” , MIT Press / Bradford Book, 1995.

2. T. Kohonen, “Self-Organization and Associative

Memory”, Springer-Verlag, Berlin, 1989.

3. Y. Liao, “Neural Networks in Hardware: A Survey”,

Department of Computer Science, University of California.

4. R. Newcom, J. Lohn. “Analog VLSI for Neural

Networks”, MIT Press / Bradford Book, 1995.

5. T. Schönauer, A. et. Al, “Digital Neurohardware”,

Technical University of Berlin, Berlin.

6. M. Skrbek, “Neural Networks-Hardware

Implementation”, Department of Computer Science and

Engineerig, FEE CTU, Prague

7. D. Macq et. Al, “Analog Implementation of a Kohonen

Map with On-Chip Learning”, IEEE Transactions on

Neural Networks, Vol 4, No 3, May 1993.

8. D. Ghosh , A. P. Shivaprasad, “Possibilistic Clustering

in Kohonen Networks for Vector Quantization”, Institute

of Science, Bangalore, India.

9. S. Ruping et. al. “Hardware Design for Self Organizing

Feature Maps with Binary Input Vectors”, Lecture notes in

Computer Science, Springer Verlag, pp. 488-493, 1993.

10. A. Upegui, E. Sanchez, “Evolving Hardware by

Dynamically Reconfiguring Xilinx FPGAs”. International

Conference on Evolvable Systems, 2005.

11. J. Tian, J. Suontausta, “Scalable Neural Network Based

Language Identification from Written Text”, Nokia

Research Center, Tampere, Finland.

12. A. E. Valencia A., J. A. Peña J. and M. Vanegas,

“Digital Hardware Design of a One-Dimensional

Kohonen's SOFM with Chessboard Norm and Exponential

Neighboring Function”, International Congress on

Computational Intelligence, Monteria, Colombia, 2005.

13. Mentor Graphics, “ModelSim”, in

http://www.model.com.

14. S. M. Trimberger, “Field-Programmable Gate Array

Technology”, Kluwer Academic Publishers, 1994.

15. Xilinx Corp, “Xilinx: The Programmable Logic

Company”, in http://www.xilinx.com.

