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ABSTRACT 

 

Kohonen self-organizing feature maps are unsupervised 

learning neural networks that categorize or classify data. 

Efficient hardware implementation of such neural 

networks requires the definition of a certain number of   

simplifications to the original algorithm. In particular, 

multiplications should be avoided by means of 

simplifications in the distance metric, the neighborhood 

function and the learning parameter values. 

In many applications, a scalable solution becomes 

necessary due to the limited memory resources available in 

many embedded platforms. In this paper, a scalable 

Kohonen map called Local Winner-Take- All (LWTA) 

design with Minkowski norm L∞ and an exponential 

neighboring function is defined, and its hardware 

architecture is presented. The scalability of the net is 

achieved via a Local Winner –Take- All approach. Results 

of VHDL simulations as well as synthesis on an FPGA of 

the proposed architecture demonstrate satisfactory 

functionality of such architecture. 

 

 

1. INTRODUCTION 

 

Artificial neural networks are parallel computational 

models comprised of densely interconnected adaptive 

processing units (neurons), able to learn a static map 

(supervised learning) or to classify and categorize the input 

space (unsupervised learning) from an input data [1]. A 

Kohonen’s self-organizing feature map (Kohonen’s 

SOFM) is an artificial neural network of unsupervised 

learning that captures the topology and probability 

distribution of input data [2]. 

 

Most of the neural networks applications have used 

simulations on conventional single-processor machines. 

The possibility of parallel processing and short operation 

times has encouraged the implementation of hardware 

neural networks [3], [4], [5], [6]. Kohonen’s SOFM has not 

been the exception, and there are several implementations 

in analog [7] as well as digital circuits [8] [9]. Generally, 

digital implementations have been more successful 

because of their lesser vulnerability to noise and their 

higher scale of integration when is compared with their 

analog counterparts, additionally several laboratories 

currently work strongly on reconfigurable circuits in which 

this kind of digital architectures will be suitable[10]. 

 

In many applications, the data load can increase at an 

incredible rate and overcome the resources of the system. 

Moreover due to the limited memory resources available in 

many embedded platforms, such as mobile terminals [11], 

a scalable solution becomes necessary.  

 

In [12] we proposed a very simple but efficient digital 

architecture of a Kohonen’s SOFM. In this work, we add a 

new feature to this design in order to make it more easily 

scalable. The idea is to be able to construct a larger map by 

connecting similar chips (e.g. FPGAs implementing a 

certain number of interconnected neurons) without the 

necessity to change the whole architecture. 

 

 

2. KOHONEN’S SELF ORGANIZING FEATURE 

MAPS 

 

A Kohonen’s self-organizing feature map is an 

unsupervised learning neural net that captures the topology 

and probability distribution of input data.  

Its architecture consists of an array of units or neurons with 

a fixed position Ri within the map and a variable n-

dimensional weight Wi , where n is the  dimensionality of 

input patterns. 
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The weights of the neurons are updated each time a new 

input pattern is presented. The magnitude of the change of 

the weight of the neuron depends on the topological 

proximity to the winner neuron, whose index i* is given 

by: 
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When the winner neuron is found, the weight of the i-th 

neuron is updated according to: 
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where ρ is the learning rate and Ф(ri, ri* ) is a 

neighborhood function. 

 

 

3. THE PROPOSED KOHONEN’S SOFM 

 

As described in [12], the LWTA design is based on the 

idea to simplify the algorithm of self organizing feature 

maps due to hardware aspects in order to minimize the 

necessary chip area and thus to maximize the number of 

processing unit per FPGA. 

 

First the Chessboard distance is used instead of the 

Euclidean distance.  

 

||max),( iii yxyxL −=∞   

 

where L∞(x,y) is the distance metric between vectors x and 

y and xi (yi) is the i-th component of the vector x (y). 

 

Therefore no multipliers are necessary to calculate the 

distance. Secondly the values of the learning rate are 

restricted to the set {1, ½, ¼ ... (½}
α 
}. Finally a discrete 

exponential neighborhood function is defined. With the 

proposed simplifications we can reformulate the weight 

update formula: 
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Therefore, ∆wi is obtained simply by multiplying (x
k
 -wi0) 

by a power of ½, which can be easily implemented with a 

shifter, avoiding the necessity of multipliers (expensive 

logic) in the circuit. 

4. HARDWARE DESIGN 

 
A one-dimensional Kohonen map of 10 units is designed; 

the system is capable of handling a two-dimensional input 

patter with 8-bit resolution.  

 

 

4.1. The Network 

 

The network is designed to work in parallel and to 

optimize execution speed. Each neuron is defined as a 

building block that processes data in an independently 

fashion. The proper behavior of the net as an aggregation 

of these building blocks is guaranteed by one “global” 

control block, the parameter scheduler. Consequently, 

when several FPGAs are connected in the LWTA design, 

the learning rate signal, α, the neighborhood width signal, 

β, and the reset signal must be connected as well as the 

signals downout and downin with the signals upin and 

upout of the new FPGA (Fig. 1). 

 

 

4.2. The Neuron 

 

A Kohonen’s neuron is composed of a Chessboard 

distance calculation block and a weight update block (Fig. 

2). Each neuron includes four 8-bit and three 4-bit adders, 

one comparator and two shifters. 

 

In order to assure a proper synchronization of the digital 

neuron, the Chessboard distance calculation block operates 

on falling edges and the weight updating block on rising 

edges of a clock signal. 
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Fig. 1. Network architecture of the LWTA design. 

 

 

 

The Parameter Scheduler 

 
The parameter scheduler updates the learning rate 

parameter α and the neighborhood width parameter β 

incrementing them from an initial value of 0 to a final 

value determined beforehand. Basically, this block consists 

of two counters (one for each parameter) registers and a 

combinatorial logic to determine the set of time steps at 

which the parameters will be incremented. 

 

 

4.4. The Winner -Take- All (WTA) Block  

 

The WTA blocks in the LWTA design has two tasks. First, 

when reset is pressed, the neuron 1 sends a “1”, the 

neuron’s position in the map, to the neuron 2 throughout 

signal downout. Afterwards, the neuron 2 sends a “2” 

throughout signal downout to neuron 3, and so on, until all 

the neurons know their position in the map (Fig. 4a).    

 

The second task of the WTA block is to find the minimum 

of the distances between all the neurons and the input 

pattern. Each neuron calculates the distance, Dj, on a 

falling edge, afterward the neuron’s j WTA block send the 

distance Dj and the position j to the adjacent neurons 

throughout signals upout and downout, then the WTA 

block of the neurons j+1 and j-1 receive the distance and 

the position throughout the signals upin and downin, and 

compares the distance with the proper value (Fig. 3). 

 

 
Fig. 2. Neuron’s architecture 
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For example, if neuron 4 has a distance of 100, neuron 

5 has a distance of 176 and neuron 3 has a distance of 

65 (Fig. 4b), then the output of the WTA blocks are 4 

and 100 (100 < 176) and 3 and 65 (65 < 100) (Fig. 4c). 

 

Note that the signal downin is the concatenation of j-1 

and Dj-1 and signal upin is the concatenation of j+1 and 

Dj+1 (Fig. 3).  

 

Fig. 3. Winner -take- all block of LWTA design. 

 

 
Fig. 4. Behavior of the LWTA design (a) in reset (b) at the beginning of the comparison (c) at the end of the comparison. 

 

 

5. EXPERIMENTAL SETUP AND RESULTS  

 

The experimental setup consists of two parts: the VHDL 

simulation of a Kohonen map for a simple clustering task 

and the synthesis of the net on an FPGA. 

 

 

5.1. Behavioral Simulation 
 

The proposed hardware was described in VHDL and then 

simulated using the Modelsim Simulator XE II 5.7g of 

Mentor Graphics [13] for two simple clustering tasks.  

 

The first input data consisted of 1000 points randomly 

generated in the xy plane between lines with slopes 1 and 

intersections of +25 and -25.  

The net was trained for 18000 iterations (time steps). The 

parameters α and β were both initialized at zero, while the 

neuron weights were initialized at (125, 125). The 

parameter α was incremented by one at time steps 4000, 

8000 and 12000, and the parameter β at time steps 2000, 

6000, 10000 and 14000. 

 

Fig. 5 shows graphs of the input data and the weight 

vectors for different phases of the algorithm. It can be seen 

how the units arrange themselves so as to follow the 

probability distribution of input vectors. Furthermore, the 

weight vectors are finally ordered according to their 

mutual similarity, so that neurons close to each other in the 

linear array correspond to neurons with close weights in 

the input pattern space, as must be the case of a well 

trained Kohonen net. 
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Fig. 5. Input data for a simple clustering task (small dots) 

and weight vectors (circles) in the input space: (a) Iteration 

0, (b) Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, 

(e) Iteration 12000, and (f) Iteration 18000 

 

The histogram of Fig. 6 shows for each neuron the number 

of times it became the winner unit of the net. At the end of 

the run, each neuron has almost the same chance to win, 

which assures that the neurons have covered the input 

space following the probability distribution of the input 

data. 

 

 

 
Fig. 6. Histogram of winning events: (a) Iteration 0, (b) 

Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, (e) 

Iteration 12000, (f) Iteration 18000 

 

The second input data is an Archimedean spiral with a 

polar equation given by: 

 

nr
1

αθ=  

 

Where r is the radial distance, θ is the polar angle and n is 

the constant which determines how tightly the spiral is 

“wrapped”.  

 

The input data consisted of 1000 points generated with a 

radial distance of 30 and a constant of 2.  The net was 

trained for 18000 iterations. The parameters α and β were 

both initialized at zero, while the neuron weights were 

initialized at (125, 125). The parameter α was incremented 

by one at time steps 4000, 8000 and 12000, and the 

parameter β at time steps 2000, 6000, 10000 and 14000. 

 

Fig. 7 shows graphs of the input data and the weight 

vectors for different phases of the algorithm.  

 

 
 

Fig. 7. Input data for a simple clustering task (small dots) 

and weight vectors (circles) in the input space: (a) Iteration 

0, (b) Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, 

(e) Iteration 12000, and (f) Iteration 18000 

 

The histogram of Fig. 8 shows for each neuron the number 

of times it became the winner unit of the net.  

 

Note that a common property in the SOFMs is a border 

aberration effect that causes a slight contraction of the map 

and a higher density of weights at the borders. This 

aberration is cause by the “pulling” by the units in the map 

thus the asymmetric behavior of the histogram.    
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Fig. 8. Histogram of winning events: (a) Iteration 0, (b) 

Iteration 1000, (c) Iteration 2000, (d) Iteration 3000, (e) 

Iteration 12000, (f) Iteration 18000 

 

 

5.2. Synthesis 

 

The description of a one-dimensional LWTA design 

composed of 10 units with chessboard metric and 

exponential neighboring function was synthesized on an 

FPGA in order to determine the suitability of a real 

implementation of the proposed hardware. An FPGA is an 

array of logic cells whose functionality and interconnection 

can be programmed by a configuration bit stream [14]. We 

used a Spartan III xc3s200ft256 from Xilinx Corp. [15] 

which has a maximum capacity of implementing 200000 

logic gates. This FPGA has 24 x 20 configurable logic 

blocks (CLBs). The Kohonen map used 1357 slices (70% 

of the whole FPGA). It must be said, however, that no 

attempt was made to optimize the synthesis.  

The maximal xc3s200’s pin-to-pin delay was 5.5 ns. Given 

that the processing time per input vector is one clock cycle 

and that both, the rising and the falling edge of the clock 

signal are being used, the system could process a new input 

vector every 11 ns. 

 

 

6. A Comparison of resources of both designs 

 

The LWTA design and the GWTA design proposed in [12] 

are compared by measuring the chip area (slices, flip flop 

slices and look up tables) and speed execution (maximum 

pin delay).  

 

 

 

 

 

 

Designs GWTA LWTA 

Slices  1126 1357 

F.F. Slices 440 545 

LUTs 1691 2141 

Maximum pin 

delay (nseg) 

5.454 5.5 

 

Although both designs process input data in one clock 

cycle, the LWTA design is not as efficient as the GTWA 

design in term of silicon area and speed execution. This 

difference is due to the conception of the WTA block. 

 

The GWTA design finds the minimum distance between 

the weights of the neurons and the input pattern by 

defining a global block, the WTA block (Fig, 9). However, 

when several FPGAs are connected, each FPGA has a part 

of the global map thus the existence of this block creates a 

problem.  

 

Therefore, in a Kohonen’s SOFM of n neurons, the WTA 

block of the GWTA design has n-1 multiplexors and n-1 

comparators (Fig. 9), however in the LWTA design, the 

WTA block has 2 multiplexors and 2 comparators per 

neuron (Fig. 4) for a total of 2*n multiplexors and 2*n 

comparators.  

 

 

In the GWTA design, the WTA global is composed of 

comparators and multiplexors arranged in a cascade 

configuration (Fig. 9). 

 

 
Fig. 9. Winner take all block of GWTA design. For the 

sake of simplicity, a 4-neuron  map is assumed. 

 

Nevertheless The Spartan x3c400 can have 30 neurons of 

the GWTA design but the LWTA design can handle the 

same amount of units in six Spartan x3c50 and can be 

easily scale by adding more FPGAs.  
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7. Conclusions and Future Work 

 

A digital scalable hardware design of a Kohonen map has 

been presented. Though very simple when compared with 

the original algorithm, the proposed model succeeds in 

retaining the main features of the network, allowing data 

clustering with topology preservation.  

 

To achieve scalability, the LWTA design “distributes” the 

Winner -Take- All block by spreading the “global” 

information locally, without the need of a central control 

unit, making plausible the interconnection of several 

FPGAs, each one configure with a part of the map, to 

implement a large map that otherwise would be impossible 

to implement in a single chip.  

Consequently, in the LWTA design, each neuron is 

connected only with the neighbor neurons and all the 

neurons work independently. 

 

The GWTA design has been used successfully on image 

segmentation problem and the LWTA design is taken into 

consideration for the image segmentation as well as 

perception of mobile robot. 
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