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ABSTRACT 

 
his work presents a fixed-point hardware implementation of 
the natural logarithm (ln) function. The natural logarithm 

approximation is based on a expanded hyperbolic CORDIC 
algorithm, which allows an efficient mapping of the logarithm 
function onto a VLSI or FPGA architecture, since the CORDIC 
algorithm consists in shifts and adds. A low-cost iterative 
hardware is presented, from which a fast pipelined hardware can 
be easily obtained. Four standard bit widths are employed: 12, 
16, 24 and 32. For each one, a numerical format for the input is 
selected and analyzed to obtain an optimum output numerical 
format. The set of resulting architectures were described in 
VHDL and were targeted to a Stratix FPGA. An error analysis 
has been performed for each case, with very encouraging results. 
 

1. INTRODUCTION 
 
The logarithm (ln) function is widely implemented with: Large 
look-up tables; and the Taylor series: a set of multiplications and 
adds. But these approaches use extensive hardware resources and 
reduce the overall performance of a system with a ln hardware. 
 Walther[1] proposed an interesting method of obtaining the  ln 
function from his hyperbolic CORDIC algorithm. However, the 
ln’s limited domain attainable with this approach will not satisfy 
all the ln applications. To address this problem, Hu[2] has 
proposed a theoretical extension to the basic hyperbolic CORDIC 
algorithm, which effectively extends the domain of the ln 
function without excessively increasing the processing time and 
hardware, and thus satisfy all the applications of the ln function. 
 A fixed-point iterative architecture of the logarithm function 
based in the expanded hyperbolic CORDIC algorithm proposed 
by Hu[2] is presented. Results in terms of resource count and 
speed were obtained by targeting the architectures, described in 
VHDL, to a Stratix FPGA. Four standard bit widths are 
employed for the inputs/outputs: 12, 16, 24 and 32. For each bit 
width, a numerical format is selected and analyzed to obtain an 
optimum output format. Finally, an error analysis is performed 
for each numerical format by contrasting the data obtained with 
the fixed-point architectures with the ideal MATLAB® values. 
 The rest of this work is organized as follows. Section 2 
describes the method of obtaining ‘ln’ with the expanded 
hyperbolic CORDIC algorithm. Section 3 describes the 
architecture implemented. Section 4 presents an analysis of each 
bit width and the results of the FPGA implementation. Section 5 
presents an error analysis. Finally, conclusions are given. 

2.  NATURAL LOGARITHM FROM THE  HYPERBOLIC 
CORDIC ALGORITHM 

 
2.1 Obtaining ‘ln’ with the hyperbolic CORDIC algorithm 
The original hyperbolic CORDIC algorithm, described by 
Walther [1], states the following iterative equations: 
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 Where: ( )i
i Tanh −−= 21θ , i = 1, 2, 3, … N  (2) 

And i is the index of the iteration. The iterations 4, 13, 40,… k, 3k 
+ 1 must be repeated to guarantee the convergence:. To obtain ln, 
the vectoring mode is used, which defines the value of δi as: 
 otherwise,,yxif:Vectoring iii 101 +≥−=δ  (3) 
In the vectoring mode, the quantities X, Y and Z tend to the 
following results, for sufficiently large N: 
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The function ln(α) is obtained by multiplying by 2 the final result 
ZN. (Equation (4)), provided that Z0=0, X0= α+1, and Y0= α -1. 
 
2.2 Basic Range of Convergence of the CORDIC algorithm 
 The basic range of convergence [2], states the following:  
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 Since X0= α+1, and Y0= α -1, then: 

  3594791068430806940
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 This is the limitation of α. For α>9.35947, the algorithm is 
useless. As ln(α) grows dramatically for α 0, the algorithm is 
also useless for values of α<0.106843. 
 
2.3 Expansion of the Range of Convergence 
 The limitation of α (Eq. (11)) will not satisfy all applications of 
ln(α). Hu [2] has modified the basic hyperbolic CORDIC 
algorithm, by including additional iterations (M+1) for negative 
indexes i: (i = 0, - 1, - 2, - 3, … - M) 

( ) 0,21 21 ≤−= −− iforTanh i
iθ   (12) 

Therefore, the modified algorithm results: 
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XN, YN,, and ZN  are as indicated in (4). δi is as indicated in (3). 
But the quantity An, described in (5), is redefined as follows: 
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 The range of convergence, now becomes: 

  max0
01 θ≤⎟

⎠
⎞

⎜
⎝
⎛−

X
YTanh    (16) 

 Where: ( ) +−= ∑
−=

−−
0

21
max 21

Mi

iTanhθ  

  ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++ ∑

=

−−−−
N

i

iN TanhTanh
1

11 22  (17) 

θmax is the maximum value of Z Tanh-1 (if Z0=0), and imposes a 
limitation to X0 and Y0, and therefore to α. The values of θmax are 
tabulated for M between 0 an 10 and shown in Table 1. 
 

M θmax M θmax M θmax 
0 
1 
2 
3 

2.09113 
3.44515 
5.16215 
7.23371 

4 
5 
6 
7 

9.65581 
12.42644 
15.54462 
19.00987 

8 
9 

10 

22.82194 
26.98070 
31.48609 

Table 1. θmax versus M for the Expanded Hyperbolic 
CORDIC algorithm (after Hu[2]) 

For example, with M = 2 (θmax=5.16215), the range of Tanh-1 is 
[-5.16215, +5.16215]. Then α ∈ [3.2825x10-5, 30463.9711], 
which is a far larger domain of ln(α) than that of  (11). It is clear 
that the expansion scheme does work. The more domain of ln(α) 
is needed, the more the iterations (M+1) that must be executed. 

3. LOW-COST ITERATIVE ARCHITECTURE 
 
 The architecture implements the ln function based on the 
expanded hyperbolic CORDIC algorithm. The inputs and outputs 
have the same width. As shown in Sec. 4, the intermediate 
registers’ width and the iterations vary with the input/output  
width. A precision consideration [3] that extends the bit width by 
ng = log2(n) bits at the LSB position is used. We define: 

n: input/output bit width 
nr: width of the internal datapath (X and Y). nr = ng + n 
nz: width of the internal datapath  for Z.  nz ≥  n 
N: number of basic iterations 
M: number of additional iterations minus one. 

We define na = nz – n as the additional bits that are added to the 
MSB part of Z, necessary as we will demonstrate in Section 4. 
 
 Fig. 1 depicts the architecture that implements the ln function 
iteratively. The two LUTs (look-up tables) store the 2 sets of 
angles defined in Eq. (2) and (12). A start signal begins the 
process. After ‘M+1+N+v’ clock cycles (‘v’: number of repeated 
iterations stated in Section 2.1), the result is obtained in Z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  j = M  0, it = 1  N 
 There are 2 stages: One that performs the iterations for i ≤ 0 and 
is depicted in the upper part, it needs 2 muxes, 2 registers, 4 
adders and two barrel shifters. This part introduces considerable 
delay, thus reducing the frequency of operation. The lower part 
of Fig. 1 implements the iterations for i > 0, this is a classical 
hardware. A state machine controls the load of the registers, the 
data that passes onto the muxes, the add/substract decision of the 
adder/substracters, and the count given to the barrel shifters.  
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4. ANALYSIS OF NUMERICAL FORMATS FOR EACH 
BIT WIDTH 

 
 Four standard bit widths for the inputs/outputs of the ln(α) 
hardware are analyzed: 12, 16, 24 and 32. In each case, an 
optimum architecture will be obtained, which will consider the 
number of normal (N) and additional iterations (M+1). 
  The least significant positions are always extended for log2(n) 
bits, where n is the input/output bit width. In the following sub-
sections we will calculate the internal datapath, but this value 
will not consider the guard bits (log2(n)), because it is always 
present and to avoid complicating the explanation. 
 The numerical format is defined as: [T D], where: 
 T: total number of bits D: total number of fractional bits 
 To obtain ln(α), we need that Z0=0, X0= α+1, and Y0 = α -1. 
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  Domain of Tanh-1: 1,1 +− . +∞∈ ,0α  
  The format for X and Y must be the same for correct internal 
operations. The maximum α attainable at each bit width defines 
the maximum X, and thus the format for X and Y is obtained. 
There is no need to add more bits to X and Y, since they tend to 
decrease as shown in (5). It can be shown that the smallest α 
causes ZN  Tanh-1(Y0/X0) to be maximum in absolute value, and 
thus, Z format is obtained. Note that X, Y and Z uses the 2’s 
complement fixed-point fractional representation. Then we use 
Table 1 to find the number of additional iterations (M) needed to 
correctly represent ZN  (by locating the nearest θmax)  
 
4.1  Input/Output bit width: 12. Format for α:[12 10] positive 
 αmax = FFFh = 3.999023  X max = α+1 =  4.999023 
  With Xmax, the format for X and Y results [12 8]. 
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Given ZN min, Z needs 3 integer bits. Thus, Z format is [12 9]. And 
Table 1 specifies 3 additional iterations (M=2, θmax=5.162). 
  However,  in this case, the min. intermediate value for Z is -
4.0439, then 1 bit must be extended to the MSB (the internal 
datapath for Z is 13 bits). With Z: [12 9] the LUT’s angles are: 

M Value N Value N Value N Value 
-2 
-1 
0 

36F 
2B5 
1F2 

1 
2 
3 

119 
083 
040 

4 
5 
6 

020 
010 
008 

7 
8 
9 

004 
002 
001 

Table 2 
Table 2 shows that the number of iterations needed is 9. Any 
further iteration will yield a value less or equal than 001h for the 
fixed angle rotation, which is useless. In conclusion, M=2 and 
N=9. Z format is [12 9], and the internal datapath for Z is 13. 
 
4.2  Input/Output bit width: 16. Format for α:[16 13] positive 
 αmax = FFFFh = 7.99987  X max = α+1 = 8.99987 
  With Xmax, the format for X and Y results [16 11]. 
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Given ZN min, Z needs 4 integer bits. Thus, Z format is [16 12]. 
And Table 1 specifies 3 additional iterations (M=2, θmax=5.162). 

Since θmax=5.162 uses 4 integer bits, no bit will be extended for 
Z. With the Z format [16 12] the LUT’s angles are: 

M Value N Value N Value N Value 
-2 
-1 
0 

1B79 
15AA 
0F91 

1 
2 
3 
4 

08CA 
0416 
0203 
0100 

5 
6 
7 
8 

0080 
0040 
0020 
0010 

9 
10 
11 
12 

0008 
0004 
0002 
0001 

Table 3 
Table 3 shows that the number of iterations needed is 12. Any 
further iteration will yield a value less or equal than 001h for the 
fixed angle rotation, which is useless. In conclusion, M=2 and 
N=12. Z format is [16 12], and the internal datapath for Z is 16. 
 
4.3  Input/Output bit width: 24. Format for α:[24 20] positive 
 αmax = FFFFFFh = 15.9999  X max = α+1 = 16.9999 
  With Xmax, the format for X and Y results [24 18]. 
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1
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Given ZN min, Z needs 4 integer bits. Thus, Z format is [24 20]. 
And Table 1 specifies 4 additional iterations (M=3, θmax=7.233). 
Since θmax=7.233 uses 4 integer bits, no bit will be extended for 
Z. With the Z format [24 20] the LUT’s angles are: 
M Value N Value N Value N Value 
-3 
-2 
-1 
0 

212524 
1B78CE 
15AA16 
0F9139 

1 
2 
3 
4 
5 

0F9139 
08C9F5 
04162C 
0202B1 
010056 

 

6 
7 
8 
9 
10 

00800B 
002000 
001000 
000800 
000400 

 

11 
12 
13 
14 
15 
16 

000200 
000100 
000080 
000040 
000020 
000010 

Table 4 
We have chosen 16 as the number of iterations. While 20 
iterations can be executed, it would increase the amount of 
hardware excessively. In conclusion, M=3 and N=16. Z format is 
[24 20], and the internal datapath for Z is 24. 
 
4.4  Input/Output bit width: 32. Format for α:[32 27] positive 
 αmax = FFFFFFFFh = 31.9999  X max = α+1 = 32.9999 
  With Xmax, the format for X and Y results [32 25]. 

  αmin =001h  357489
1
11 .TanhZ
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Given ZN min, Z needs 5 integer bits. Thus, Z format is [32 27]. 
And Table 1 specifies 5 additional iterations (M=4, θmax=9.655). 
Since θmax=9.655 needs 5 integer bits, no bit will be extended for 
Z. With the Z format [32 27] the LUT’s angles are: 

M Value N Value N Value 
-4 
-3 
-2 
-1 
0 

13607294 
109291E9 
0DBC6724 
0AD50B1D 
07C89CAC 

1 
2 
3 
4 
5 
6 
7 
8 

0464FA9F 
020B15DF 
01015892 
00802AC4 
00400556 
002000AB 
00100015 
00080003 

9 
10 
11 
12 
13 
14 
15 
16 

00040000 
00020000 
00010000 
00008000 
00004000 
00002000 
00001000 
00000800 

Table 5 
We have chosen 16 as the number of iterations. While 27 
iterations can be executed, it would increase the amount of 
hardware excessively. In conclusion, M=4 and N=16. Z format is 
[32 27], and the internal datapath for Z is 32. 
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4.5 Obtaining the ln function from Z 
The function ln(α) is obtained by multiplying ZN by 2., which is 
tantamount to shift the fractional point 1 bit to the right, which 
means reading Z in the way of the third column of Table 6.: 

n ZN format obtained in the 
preceding sub-sections 

Z format for 
having ln 

12 [12 9]   (obtained in 4.1) [12 8] 
16 [16 12] (obtained in 4.2) [16 11] 
24 [24 20] (obtained in 4.3) [24 19] 
32 [32 27] (obtained in 4.4) [32 26] 

Table 6. How to read Z in order to have ln(α) 
 
4.6 Results of FPGA implementation 
Table 7 shows the resource effort and maximum frequency of the 
iterative architecture that implements the ln function. 

Type n LEs fmax (MHz) 

12 407 105.67 

16 525 103.77 

24 786 88.27 

ITE
RA

TI
VE

 (F
old

ed
 

Re
cu

rsi
ve

) 

32 1123 79.64 

Table 7. Final Results. Device: Stratix EP1S10F484C5 
The results, obtained with Quartus II 5.0, show that the ln 
implementation is suitable for medium and high density FPGAs. 
 

5. ERROR ANALYSIS 
 
For the cases analyzed in 4.1, 4.2, 4.3 and 4.4, an error analysis is 
performed. The results are contrasted with the ideal values 
obtained in MATLAB®. The error measure will be: 

 
valueideal

valueCORDICvalueidealErrorRelative −
=  (19) 

We have taken 1024 values equally spaced along the maximum 
domain of functions obtained for each  bit width analyzed. 
Figures 2 and 3 show the relative error performance for the ln (w) 
function for 12, 16, 24 and 32 bits.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2.   In Curve A, 12 bits were used (w ∈ <0,4>). In 
Curve B, 16 bits were used (w ∈ <0,8>).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.   In Curve A, 24 bits were used (w ∈ <0,16>). In 
Curve B, 32 bits were used (w ∈ <0,32>). 

 
For w near 1, all the curves exhibit high relative error values, 
because ln(w) yields the smallest values for w near 1, (note that  
ln(1) = 0)., and the fixed-point hardware fails representing those 
small values. This is most critical in the case of 12 bits, where the 
relative error is near 100% for w near 1. But, for 24 and 32 bits 
the highest relative error is approximately 0.1% for w near 1. 
 

6 CONCLUSIONS 
 
• The architecture, has proved to be amenable for our FPGA 

implementation, as the clock rate and resource effort 
indicates. The function ln ha a greater domain as the bit 
width increases. 

• We chose the format for α to be [12 10], [16 13], [24 20], 
and [32 27] for 12, 16, 24 and 32 bits respectively. This 
election is almost arbitrary. The reader can explore other 
alternatives, but it is our opinion that the formats chosen are 
the ones that work with the optimum quantity of fractional 
bits for each format. 

• The architecture can be readily unfolded and pipelined in 
order to obtain a fast logarithm hardware. It is left to the 
reader to implement the pipelined architecture. 
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