
 1

A FIXED-POINT IMPLEMENTATION OF THE NATURAL LOGARITHM
BASED ON A EXPANDED HYPERBOLIC CORDIC ALGORITHM

Daniel R. Llamocca-Obregón

llamocca.dr@pucp.edu.pe
Carla P. Agurto-Ríos

agurto.cp@pucp.edu.pe
Grupo de Procesamiento Digital de Señales e Imágenes - Pontificia Universidad Católica del Perú

Av. Universitaria s/n Cuadra 18 - Lima 32, Perú
Telf.: +511-6262000 Anexo 4681

ABSTRACT

his work presents a fixed-point hardware implementation of
the natural logarithm (ln) function. The natural logarithm

approximation is based on a expanded hyperbolic CORDIC
algorithm, which allows an efficient mapping of the logarithm
function onto a VLSI or FPGA architecture, since the CORDIC
algorithm consists in shifts and adds. A low-cost iterative
hardware is presented, from which a fast pipelined hardware can
be easily obtained. Four standard bit widths are employed: 12,
16, 24 and 32. For each one, a numerical format for the input is
selected and analyzed to obtain an optimum output numerical
format. The set of resulting architectures were described in
VHDL and were targeted to a Stratix FPGA. An error analysis
has been performed for each case, with very encouraging results.

1. INTRODUCTION

The logarithm (ln) function is widely implemented with: Large
look-up tables; and the Taylor series: a set of multiplications and
adds. But these approaches use extensive hardware resources and
reduce the overall performance of a system with a ln hardware.
 Walther[1] proposed an interesting method of obtaining the ln
function from his hyperbolic CORDIC algorithm. However, the
ln’s limited domain attainable with this approach will not satisfy
all the ln applications. To address this problem, Hu[2] has
proposed a theoretical extension to the basic hyperbolic CORDIC
algorithm, which effectively extends the domain of the ln
function without excessively increasing the processing time and
hardware, and thus satisfy all the applications of the ln function.
 A fixed-point iterative architecture of the logarithm function
based in the expanded hyperbolic CORDIC algorithm proposed
by Hu[2] is presented. Results in terms of resource count and
speed were obtained by targeting the architectures, described in
VHDL, to a Stratix FPGA. Four standard bit widths are
employed for the inputs/outputs: 12, 16, 24 and 32. For each bit
width, a numerical format is selected and analyzed to obtain an
optimum output format. Finally, an error analysis is performed
for each numerical format by contrasting the data obtained with
the fixed-point architectures with the ideal MATLAB® values.
 The rest of this work is organized as follows. Section 2
describes the method of obtaining ‘ln’ with the expanded
hyperbolic CORDIC algorithm. Section 3 describes the
architecture implemented. Section 4 presents an analysis of each
bit width and the results of the FPGA implementation. Section 5
presents an error analysis. Finally, conclusions are given.

2. NATURAL LOGARITHM FROM THE HYPERBOLIC
CORDIC ALGORITHM

2.1 Obtaining ‘ln’ with the hyperbolic CORDIC algorithm
The original hyperbolic CORDIC algorithm, described by
Walther [1], states the following iterative equations:

iiii

i
iiii

i
iiii

ZZ
XYYYXX

θδ
δδ

−=
+=+=

+

−
+

−
+

1

11 22
 (1)

 Where: ()i
i Tanh −−= 21θ , i = 1, 2, 3, … N (2)

And i is the index of the iteration. The iterations 4, 13, 40,… k, 3k
+ 1 must be repeated to guarantee the convergence:. To obtain ln,
the vectoring mode is used, which defines the value of δi as:
 otherwise,,yxif:Vectoring iii 101 +≥−=δ (3)
In the vectoring mode, the quantities X, Y and Z tend to the
following results, for sufficiently large N:

⎟
⎠
⎞

⎜
⎝
⎛+←

←−←

−
0

01
0

2
0

2
0 0

X
YTanhZZ

YYXAX

N

NnN
 (4)

 Where : ∏
=

−−←
N

i

i
nA

1

221 (5)

Since: () ⎟
⎠
⎞

⎜
⎝
⎛

+
−

= −

1
12 1

α
αα Tanhln , +∞∈ ,0α (6)

The function ln(α) is obtained by multiplying by 2 the final result
ZN. (Equation (4)), provided that Z0=0, X0= α+1, and Y0= α -1.

2.2 Basic Range of Convergence of the CORDIC algorithm
 The basic range of convergence [2], states the following:

 ∑
=

− +≤⎟
⎠
⎞⎜

⎝
⎛

N

i
iNX

YTanh
1

0
01 θθ (7)

 ∞→≤⎟
⎠
⎞⎜

⎝
⎛− Nfor,.X
YTanh 11821

0
01 (8)

 ∞→≈ Nfor,.X
Y

max
806940

0
0 (9)

 () 23642
1
12 1 .Tanhln

max
max =⎟

⎠
⎞

⎜
⎝
⎛

+
−

= −

α
αα (10)

T

 2

 Since X0= α+1, and Y0= α -1, then:

 3594791068430806940
1
1 ... ≤≤→≤

+
− α

α
α

 (11)

 This is the limitation of α. For α>9.35947, the algorithm is
useless. As ln(α) grows dramatically for α 0, the algorithm is
also useless for values of α<0.106843.

2.3 Expansion of the Range of Convergence
 The limitation of α (Eq. (11)) will not satisfy all applications of
ln(α). Hu [2] has modified the basic hyperbolic CORDIC
algorithm, by including additional iterations (M+1) for negative
indexes i: (i = 0, - 1, - 2, - 3, … - M)

() 0,21 21 ≤−= −− iforTanh i
iθ (12)

Therefore, the modified algorithm results:

()
()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

−+=

−+=

≤
−−

+

−
+

−
+

21
1

2
1

2
1

21

21

21

0
i

iii

i
i

iii

i
i

iii

TanhZZ

XYY

YXX

iFor

δ

δ

δ

 (13)

()⎪
⎪
⎩

⎪⎪
⎨

⎧

−=

+=

+=

>
−−

+

−
+

−
+

i
iii

i
iiii

i
iiii

TanhZZ

XYY

YXX

iFor

2

2

2

0
1

1

1

1

δ

δ

δ

 (14)

XN, YN,, and ZN are as indicated in (4). δi is as indicated in (3).
But the quantity An, described in (5), is redefined as follows:

 ()()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−← ∏∏

=

−

−=

−
N

i

i

Mi

i
nA

1

2
0 22 21211 (15)

 The range of convergence, now becomes:

 max0
01 θ≤⎟

⎠
⎞

⎜
⎝
⎛−

X
YTanh (16)

 Where: () +−= ∑
−=

−−
0

21
max 21

Mi

iTanhθ

 () ()
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++ ∑

=

−−−−
N

i

iN TanhTanh
1

11 22 (17)

θmax is the maximum value of Z Tanh-1 (if Z0=0), and imposes a
limitation to X0 and Y0, and therefore to α. The values of θmax are
tabulated for M between 0 an 10 and shown in Table 1.

M θmax M θmax M θmax
0
1
2
3

2.09113
3.44515
5.16215
7.23371

4
5
6
7

9.65581
12.42644
15.54462
19.00987

8
9

10

22.82194
26.98070
31.48609

Table 1. θmax versus M for the Expanded Hyperbolic
CORDIC algorithm (after Hu[2])

For example, with M = 2 (θmax=5.16215), the range of Tanh-1 is
[-5.16215, +5.16215]. Then α ∈ [3.2825x10-5, 30463.9711],
which is a far larger domain of ln(α) than that of (11). It is clear
that the expansion scheme does work. The more domain of ln(α)
is needed, the more the iterations (M+1) that must be executed.

3. LOW-COST ITERATIVE ARCHITECTURE

 The architecture implements the ln function based on the
expanded hyperbolic CORDIC algorithm. The inputs and outputs
have the same width. As shown in Sec. 4, the intermediate
registers’ width and the iterations vary with the input/output
width. A precision consideration [3] that extends the bit width by
ng = log2(n) bits at the LSB position is used. We define:

n: input/output bit width
nr: width of the internal datapath (X and Y). nr = ng + n
nz: width of the internal datapath for Z. nz ≥ n
N: number of basic iterations
M: number of additional iterations minus one.

We define na = nz – n as the additional bits that are added to the
MSB part of Z, necessary as we will demonstrate in Section 4.

 Fig. 1 depicts the architecture that implements the ln function
iteratively. The two LUTs (look-up tables) store the 2 sets of
angles defined in Eq. (2) and (12). A start signal begins the
process. After ‘M+1+N+v’ clock cycles (‘v’: number of repeated
iterations stated in Section 2.1), the result is obtained in Z

Figure 1. j = M 0, it = 1 N
 There are 2 stages: One that performs the iterations for i ≤ 0 and
is depicted in the upper part, it needs 2 muxes, 2 registers, 4
adders and two barrel shifters. This part introduces considerable
delay, thus reducing the frequency of operation. The lower part
of Fig. 1 implements the iterations for i > 0, this is a classical
hardware. A state machine controls the load of the registers, the
data that passes onto the muxes, the add/substract decision of the
adder/substracters, and the count given to the barrel shifters.

 3

4. ANALYSIS OF NUMERICAL FORMATS FOR EACH
BIT WIDTH

 Four standard bit widths for the inputs/outputs of the ln(α)
hardware are analyzed: 12, 16, 24 and 32. In each case, an
optimum architecture will be obtained, which will consider the
number of normal (N) and additional iterations (M+1).
 The least significant positions are always extended for log2(n)
bits, where n is the input/output bit width. In the following sub-
sections we will calculate the internal datapath, but this value
will not consider the guard bits (log2(n)), because it is always
present and to avoid complicating the explanation.
 The numerical format is defined as: [T D], where:
 T: total number of bits D: total number of fractional bits
 To obtain ln(α), we need that Z0=0, X0= α+1, and Y0 = α -1.

 Then:
()
21

11 α
α
α lnTanhZ N =⎟

⎠
⎞

⎜
⎝
⎛

+
−

← − (18)

 Domain of Tanh-1: 1,1 +− . +∞∈ ,0α
 The format for X and Y must be the same for correct internal
operations. The maximum α attainable at each bit width defines
the maximum X, and thus the format for X and Y is obtained.
There is no need to add more bits to X and Y, since they tend to
decrease as shown in (5). It can be shown that the smallest α
causes ZN Tanh-1(Y0/X0) to be maximum in absolute value, and
thus, Z format is obtained. Note that X, Y and Z uses the 2’s
complement fixed-point fractional representation. Then we use
Table 1 to find the number of additional iterations (M) needed to
correctly represent ZN (by locating the nearest θmax)

4.1 Input/Output bit width: 12. Format for α:[12 10] positive
 αmax = FFFh = 3.999023 X max = α+1 = 4.999023
 With Xmax, the format for X and Y results [12 8].

 αmin =001h 4657353
1
11 .TanhZ

min

min
minN −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

= −

α
α

Given ZN min, Z needs 3 integer bits. Thus, Z format is [12 9]. And
Table 1 specifies 3 additional iterations (M=2, θmax=5.162).
 However, in this case, the min. intermediate value for Z is -
4.0439, then 1 bit must be extended to the MSB (the internal
datapath for Z is 13 bits). With Z: [12 9] the LUT’s angles are:

M Value N Value N Value N Value
-2
-1
0

36F
2B5
1F2

1
2
3

119
083
040

4
5
6

020
010
008

7
8
9

004
002
001

Table 2
Table 2 shows that the number of iterations needed is 9. Any
further iteration will yield a value less or equal than 001h for the
fixed angle rotation, which is useless. In conclusion, M=2 and
N=9. Z format is [12 9], and the internal datapath for Z is 13.

4.2 Input/Output bit width: 16. Format for α:[16 13] positive
 αmax = FFFFh = 7.99987 X max = α+1 = 8.99987
 With Xmax, the format for X and Y results [16 11].

 αmin =001h 505454
1
11 .TanhZ

min

min
minN −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

= −

α
α

Given ZN min, Z needs 4 integer bits. Thus, Z format is [16 12].
And Table 1 specifies 3 additional iterations (M=2, θmax=5.162).

Since θmax=5.162 uses 4 integer bits, no bit will be extended for
Z. With the Z format [16 12] the LUT’s angles are:

M Value N Value N Value N Value
-2
-1
0

1B79
15AA
0F91

1
2
3
4

08CA
0416
0203
0100

5
6
7
8

0080
0040
0020
0010

9
10
11
12

0008
0004
0002
0001

Table 3
Table 3 shows that the number of iterations needed is 12. Any
further iteration will yield a value less or equal than 001h for the
fixed angle rotation, which is useless. In conclusion, M=2 and
N=12. Z format is [16 12], and the internal datapath for Z is 16.

4.3 Input/Output bit width: 24. Format for α:[24 20] positive
 αmax = FFFFFFh = 15.9999 X max = α+1 = 16.9999
 With Xmax, the format for X and Y results [24 18].

 αmin =001h 931476
1
11 .TanhZ

min

min
minN −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

= −

α
α

Given ZN min, Z needs 4 integer bits. Thus, Z format is [24 20].
And Table 1 specifies 4 additional iterations (M=3, θmax=7.233).
Since θmax=7.233 uses 4 integer bits, no bit will be extended for
Z. With the Z format [24 20] the LUT’s angles are:
M Value N Value N Value N Value
-3
-2
-1
0

212524
1B78CE
15AA16
0F9139

1
2
3
4
5

0F9139
08C9F5
04162C
0202B1
010056

6
7
8
9
10

00800B
002000
001000
000800
000400

11
12
13
14
15
16

000200
000100
000080
000040
000020
000010

Table 4
We have chosen 16 as the number of iterations. While 20
iterations can be executed, it would increase the amount of
hardware excessively. In conclusion, M=3 and N=16. Z format is
[24 20], and the internal datapath for Z is 24.

4.4 Input/Output bit width: 32. Format for α:[32 27] positive
 αmax = FFFFFFFFh = 31.9999 X max = α+1 = 32.9999
 With Xmax, the format for X and Y results [32 25].

 αmin =001h 357489
1
11 .TanhZ

min

min
minN −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

= −

α
α

Given ZN min, Z needs 5 integer bits. Thus, Z format is [32 27].
And Table 1 specifies 5 additional iterations (M=4, θmax=9.655).
Since θmax=9.655 needs 5 integer bits, no bit will be extended for
Z. With the Z format [32 27] the LUT’s angles are:

M Value N Value N Value
-4
-3
-2
-1
0

13607294
109291E9
0DBC6724
0AD50B1D
07C89CAC

1
2
3
4
5
6
7
8

0464FA9F
020B15DF
01015892
00802AC4
00400556
002000AB
00100015
00080003

9
10
11
12
13
14
15
16

00040000
00020000
00010000
00008000
00004000
00002000
00001000
00000800

Table 5
We have chosen 16 as the number of iterations. While 27
iterations can be executed, it would increase the amount of
hardware excessively. In conclusion, M=4 and N=16. Z format is
[32 27], and the internal datapath for Z is 32.

 4

0 5 10 15 20 25 30 35
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

w

R
el

at
iv

e
E

rro
r:

Ln
(w

)

24 bits
32bits

A

B

0 1 2 3 4 5 6 7 8
10-8

10-6

10-4

10-2

100

102

w

R
el

at
iv

e
E

rro
r:

Ln
(w

)

12 bits
16bits

A

B

4.5 Obtaining the ln function from Z
The function ln(α) is obtained by multiplying ZN by 2., which is
tantamount to shift the fractional point 1 bit to the right, which
means reading Z in the way of the third column of Table 6.:

n ZN format obtained in the
preceding sub-sections

Z format for
having ln

12 [12 9] (obtained in 4.1) [12 8]
16 [16 12] (obtained in 4.2) [16 11]
24 [24 20] (obtained in 4.3) [24 19]
32 [32 27] (obtained in 4.4) [32 26]

Table 6. How to read Z in order to have ln(α)

4.6 Results of FPGA implementation
Table 7 shows the resource effort and maximum frequency of the
iterative architecture that implements the ln function.

Type n LEs fmax (MHz)

12 407 105.67

16 525 103.77

24 786 88.27

ITE
RA

TI
VE

 (F
old

ed

Re
cu

rsi
ve

)

32 1123 79.64

Table 7. Final Results. Device: Stratix EP1S10F484C5
The results, obtained with Quartus II 5.0, show that the ln
implementation is suitable for medium and high density FPGAs.

5. ERROR ANALYSIS

For the cases analyzed in 4.1, 4.2, 4.3 and 4.4, an error analysis is
performed. The results are contrasted with the ideal values
obtained in MATLAB®. The error measure will be:

valueideal

valueCORDICvalueidealErrorRelative −
= (19)

We have taken 1024 values equally spaced along the maximum
domain of functions obtained for each bit width analyzed.
Figures 2 and 3 show the relative error performance for the ln (w)
function for 12, 16, 24 and 32 bits.

Figure 2. In Curve A, 12 bits were used (w ∈ <0,4>). In
Curve B, 16 bits were used (w ∈ <0,8>).

Figure 3. In Curve A, 24 bits were used (w ∈ <0,16>). In
Curve B, 32 bits were used (w ∈ <0,32>).

For w near 1, all the curves exhibit high relative error values,
because ln(w) yields the smallest values for w near 1, (note that
ln(1) = 0)., and the fixed-point hardware fails representing those
small values. This is most critical in the case of 12 bits, where the
relative error is near 100% for w near 1. But, for 24 and 32 bits
the highest relative error is approximately 0.1% for w near 1.

6 CONCLUSIONS

• The architecture, has proved to be amenable for our FPGA

implementation, as the clock rate and resource effort
indicates. The function ln ha a greater domain as the bit
width increases.

• We chose the format for α to be [12 10], [16 13], [24 20],
and [32 27] for 12, 16, 24 and 32 bits respectively. This
election is almost arbitrary. The reader can explore other
alternatives, but it is our opinion that the formats chosen are
the ones that work with the optimum quantity of fractional
bits for each format.

• The architecture can be readily unfolded and pipelined in
order to obtain a fast logarithm hardware. It is left to the
reader to implement the pipelined architecture.

7 REFERENCES

[1] J.S. Walther, “A unified algorithm for elementary

functions”, in Proc. Spring Joint Comput. Conf., 1971, pp.
379-385.

[2] X. Hu, R. Huber, S. Bass, “Expanding the Range of
Convergence of the CORDIC Algorithm”, IEEE
Transactions on Computers. Vol. 40, Nº 1, pp. 13-21, Jan.
1991.

[3] U. Meyer – Baese, Digital Signal Processing with Field
Programmable Gate Arrays: Springer-Verlag Berlin
Heidelberg, May 2001.

[4] Ray Andraka, “A survey of CORDIC algorithm for FPGA
based computers”.

