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ABSTRACT

Recent research results propose and show the usefulness 
of a fuzzy control based approach to the development of 
intelligent  systems  for  congestion  control  in  Internet 
routers.  However,  adoption  of  this  new  technology  is 
handicapped because of operational requirements, mostly 
in  terms  of  inference  speed,  a  hard  constrain  on  the 
practical  implementation  of  key  traffic  controlling 
systems. We report  on the implementation of intelligent 
fuzzy controllers for Internet traffic using an FPGA based 
prototyping platform. A development methodology and a 
tool chain, a flexible and open prototyping platform, a set 
of  fuzzy  controllers  and  implementation  results  for  a 
number of traffic controllers are presented. Our prototypes 
are shown to satisfy the requirements of high performance 
routing hardware deployed in the current Internet.

1. INTRODUCTION

The  development  of  intelligent  systems  for  congestion 
control (and traffic control in general) in the Internet is an 
open research area. Recent results propose and show the 
usefulness  of  a  fuzzy  control  based  approach 
[3,23,20,18,8,21]. 

However,  operational  requirements  of  Internet  traffic 
controlling systems, mostly in terms of processing speed, 
impose a hard constrain on its practical implementation. 
Thus, a  limiting factor for the real-world deployment of 
fuzzy  controllers  for  Internet  traffic  is  the  need  for 
efficient  implementations   that  can  achieve  the  high 
inference  rates  required  by  current  and  future  high 
performance  networks.  Microelectronic  implementations 
with specific and efficient architectures must be employed 
in  this  application  area  of  fuzzy  logic  based  systems, 
specially  in  the  case  of  current  and  future  high 
performance network backbones [14]. 

More generally,  Internet  traffic dynamics remains  an 
open  topic  of  research.  Soft  computing  systems  can 
provide intelligent solutions for both traffic analysis and 
control provided they can operate in real-time in current 
high  speed  networks.  Thus,  the  availability  of  efficient 

microelectronic  implementations  has  two  important 
implications:

• Opens a new application area of fuzzy systems in 
Internet.

• Fosters the research on fuzzy logic based solutions 
to Internet traffic control and analysis.

We report on the implementation of intelligent  fuzzy 
controllers  for  Internet  traffic  using  an  FPGA  based 
prototyping  platform.  Prototype  implementation  results 
are shown to satisfy the requirements of high performance 
routing hardware deployed in the current Internet.

In section 2, we present an open prototyping platform 
defined  for  easing  the  development  and  validation  of 
Internet  traffic  controllers.  Section  3  describes  a 
companion development methodology and tool chain that 
covers the full design flow from specification to prototype 
implementation and validation.  A representative subset of 
the traffic controllers we have implemented is outlined in 
section  4.  In  section  5,  prototypes  hardware 
implementation results are given. Finally, we summarize 
conclusions from our work and future steps.

2. PROTOTYPING PLATFORM

Throughout  more  than  a  decade,  strategies  and 
methodologies  for  prototyping  fuzzy  logic  based 
controllers  have been developed. To date,  most work on 
this topic has been focused on industrial applications [2]. 
Considering the specific requirements as well as the high 
cost and complexity of high performance routers currently 
deployed  on  the  Internet,  we have  developed  a  flexible 
prototyping platform for Internet traffic controllers. This 
platform has been defined with a  twofold objective:
• Easing  the  microelectronic  implementation  of 

prototypes of Internet traffic controllers.
• Providing a complete set of tools and environment for 

realistic validation.
Our  prototype  development  architecture,  depicted  in 

figure 1, is based on a conventional PC equipped with an 
FPGA development board with PCI interface, thus 
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making a flexible and  cheap  solution  with  no  specific 
hardware requirements yet able to emulate the behavior of 
complex and expensive routing equipment. As shown in 
figure  2, when implementing fuzzy systems, we consider 
two main function blocks: those directly related to fuzzy 
inference  and  those  that  can  be  classified  as  auxiliary 
functions  (such  as  initialization,  timing,  pre/post-
processing, etc.) [2]. For the implementation of prototypes 
of  fuzzy  controllers  for  Internet  traffic  the  following 
model is used: 

• A fuzzy inference module (FIM) is  implemented 
on hardware described by means of VHDL according 
to an specific implementation architecture tailored for 
efficient  and  fast  fuzzy inference.  The methodology 
and tools employed for the development of the FIM is 
described in the next section.

• All  auxiliary  functions  are  implemented  as 
software.   Software  can  run  on  the  PC  operating 
system  as  well  as  on  optional  components 
implemented on the FPGA of  the development board.

 A flexible and open architecture for implementing fuzzy 
systems  on  the  FPGA  has  been  defined.  Within  this 
architecture,  depicted  in  figure  3,  FIM  modules  are 
integrated  as  subsystems  of  a  potentially  complex  and 
reconfigurable fuzzy logic based digital system. 

Interconnection between the fuzzy digital  system and 
the  host  PC  is  done  through  a  standard  PCI  bus.  The 
internal bus of the fuzzy digital system is a WISHBONE 
[9] bus , a SoC interconnection architecture for portable IP 
cores, that connects a variable number of  components :

• FIM.
• PCI-WISHBONE  bridge  and  WISHBONE  bus 
controller.
• Additional  cores  (Network  Interface  Card, 
Processor , etc.).

We  are  currently  using  an  AvNet  ADS-XLX-SP3-
EVL1500  FPGA  development  board.  Both  the 
WISHBONE [9] bus and the PCI-WISHBONE Bridge [6] 
IP  cores  have  been  developed  under  free  distribution 
licenses  by the  OpenCores  [17]  organization  as  well  as 
other  entities.  WISHBONE Systems can  easily interface 
with OPB [19] based systems through the WISHBONE-
OPB bridge  provided  as  a  plug-in  for  Xilinx  EDK and 
also available under a free distribution license.

 This way, software tasks can be defined using common 
programming  languages and  can  be run  on the  generic 
purpose processing units of the PC as well as on specific 
processing units included in the  FPGA. For instance, a 
fuzzy  logic  based  traffic  analysis  application  can  be 
implemented incorporating an OpenRisc Core for which 
the GNU/Linux operating system is available. 

The PCI interface of the prototypes eases integration 
with  routing  architectures  by  major  vendors.  Within 
routing  architectures  currently  deployed  in  the  Internet 
[10], the fuzzy controllers could be seamlessly integrated 
as  processing  engines  whether  at  the  NPU  and/or  the 
output/input  cards  depending  on  the  quality  of  service 
architecture implemented on the router.

In  addition,  when  the  development  board  employed 
includes a network interface card, as is the case with our 
AvNet board,  a  whole fuzzy logic based traffic analysis 
application can be implemented as a standalone SoPC on 
the FPGA.
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Figure 1: Prototyping platform scheme.
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3. DEVELOPMENT METHODOLOGY AND TOOL 
CHAIN

As a result of more than 10 years of  research experience 
on the digital implementation of fuzzy systems, the fuzzy 
group at  IMSE has  developed  methodologies  and  CAD 
tools  that  fulfill  the  design  flow of  fuzzy  systems.  We 
leverage  on  the  Xfuzzy [15]  CAD suite  of  tools  and  a 
methodology [2] for the development of fuzzy controllers 
to define a  methodology and  tool  chain  tailored for  the 
development of fuzzy Internet traffic controllers. 

The design flow and tool chain we have defined and 
used  to  develop  fuzzy inference  modules  is  depicted  in 
figure 4.

The design flow covers the whole development process, 
from initial specification to final implementation whether 
as  software  or  hardware.  The  first  development  stage 
(description)  is  performed  using  a  high  level  fuzzy 
systems specification language, XFL [16], which can later 
be  turned  into  C  and  VHDL  code  among  other 
implementation options.

The tool chain includes: 
• The xfc and xfcpp tools (included in Xfuzzy), which 

turns an XFL specification into C and C++ code.
• The xfvhdl tool (included in Xfuzzy), which turns an 

XFL specification into VHDL code generated for a 

specific efficient architecture for the implementation 
of fuzzy systems [15].

• ns-2 [11],  an open network simulator widely spread 
within the Internet research community.

• Operating  system  kernel  (currently  Linux  and 
FreeBSD).

The development stages after  specification have been 
tailored  for  Internet  traffic  controller  development  as 
follows.

For network simulation, we have used ns-2. ns-2 is an 
object  oriented  discrete  event  driven  simulator  with 
support for a vast variety of transport protocols, queueing 
systems, routing schemes and access media, thus enabling 
us to evaluate the performance of traffic controllers under 
complex  and  realistic  simulated  scenarios.  Fuzzy 
controllers  are  integrated  into  ns-2  as  components 
implemented in C.

Verification  can  be  performed  over  software  and 
hardware implementations of fuzzy controllers.  Software 
verification is performed over a controller implementation 
within the kernel of the general purpose operating system 
of the PC. For verifying hardware prototypes of FIMs, two 
procedures have been considered:
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Figure 4: Design flow and tool chain.
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• Verification by means of network simulators.  To this 
end, code and drivers to make it possible to access the 
FIM in  the  FPGA development  card from ns-2 has 
been developed.

• Verification  through  emulated  scenarios  where  a 
router  is  emulated  by  means  of  the  prototyping 
platform. Validation in real or emulated scenarios is 
also  possible  with  our  prototyping  architecture  by 
using  the  prototyping  PC  as  a  router.  This 
accomplished by replacing queue control functionality 
in  the  operating  system  network  layer  with 
functionality provided by the FIM in the development 
board.  To  this  end,  kernel  drivers  have  been 
developed  to  make  it  possible  to  access  the  fuzzy 
controller  in  the  FPGA  development  card  from 
networking modules in  the operating system kernel. 
Drivers have been developed for FreeBSD and Linux 
kernels.

We  have  defined  as  general  hardware-software 
partition  the  implementation  on  hardware  of  the  FIM 
module  whereas  all  other  tasks  are  implemented  as 
software. 

Implementation  of  novel  hardware  components  and 
experimental  deployment  on  high-end  equipment  poses 
major  practical  problems.  Deployment  on  high-end 
(around 1 million euro cost per unit)  routing equipment 
requires the adoption of a new technology by vendors of 
routing hardware (a market with high inertia), which is a 
long  term  objective  of  our  research.  Nonetheless,  by 
means  of  our  prototype  architecture,  validation  can  be 
performed the same way as verification through emulated 
scenarios as described above. 

By following a well defined development methodology, 
we provide a  much more  efficient  and  formal  approach 
that those currently used for Internet routers development.

4. FUZZY INTERNET TRAFFIC CONTROLLERS

A number of research results have been reported on the 
application of fuzzy systems to the general area of active 
queue management [8,18,3] as well as traffic control with 
support  for  differentiated  quality  of   service  [23,21,1]. 
Recent results have also been made on the development of 
a fuzzy queueing theory [22] as an extension to classical 
queueing  theory,  which  is  the  basis  of  many  traffic 
processing mechanisms in the current Internet.

The  aforementioned  fuzzy  traffic  controllers  manage 
packet  queues  and  are  targeted  at  core  routers.  These 
controllers  show  some  similarities  to  classic  real  time 
regulators, such as PD controllers. Basically, the inputs to 
the fuzzy system are two: packet queue current size and 
packet queue variation. The fuzzy inference system must 
produce as output the routing decision to apply to the last 

packet received at the router. Some authors have applied 
fuzzy-PD techniques to Internet traffic control [5].

We have considered proposals by independent authors 
but preferred to develop new systems that take advantage 
of the prototyping platform, methodology and tool chain 
outlined  in  previous  sections.  We  have  developed 
Mamdani  fuzzy  controllers  considering  simplicity  and 
reduced number of rules as main design constrains.  The 
motivation  being  that  because  of  the  complexity  of 
Internet  traffic  control  it  is  not  enough  to  design  and 
adjust systems so that that they can exhibit near-optimal 
performance  within  a  small  collection  of  simulated 
scenarios.  Instead,  major  objectives  are  interpretability, 
flexibility  and  adaptability,  which  require  testing  on  a 
broad range of complex simulated and real scenarios. We 
also note that simplicity in terms of the number of rules 
will  ease  wide-scale  adoption  of  fuzzy  controllers  as 
experimental Internet traffic controlling systems.

As  an  example  we  outline  one  of  the  systems 
developed,  named  BestEffortAQM  (Active  Queue 
Management  for  best  effort  service  class),  which 
implements a traffic controller for congestion control on 
routers  which  only best-effort  class  of service.  The rule 
base is presented in table 1 whereas the resulting control 
surface is depicted in figure 5.

Two inputs  and one output are defined,  as  described 
above.  Input  ei is  the  deviation  between  the  number  of 
currently queued packets  and  a  desired value reference, 
while input ei-1 is the deviation at the last time interval. 7 
linguistic terms are defined for both inputs, ranging NVB, 
NB, NS, Z, PS, PB, PVB, for increasing differences. The 
output of the system,  pi, is defined as a probability value 
for discarding the next packet to be routed. 7 linguistic 
terms  are  defined  for  increasing  levels  of  probability 
ranging Z, T, VS, S, B, VB, H.
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Figure 5: Control surface of BestEffortAQM.



pi

ei-1

NVB NB NS Z PS PB PVB

ei

NVB H H H H H H H

NB B B B VB VB H H

NS T VS S S B VB VB

Z Z Z Z T VS S B

PS Z Z Z Z T T VS

PB Z Z Z Z Z Z T

PVB Z Z Z Z Z Z Z

Table 1: AQMBestEffort Rule Base.

A number of fuzzy controllers for Internet traffic have 
been developed (implementation results are given in  the 
next section). The performance of this new fuzzy systems 
as  well  as  other  independent  proposals  and  traditional 
traffic controllers has been compared in terms of stability, 
convergence speed, fairness and other criteria in a set of 
network scenarios. 

The following systems are considered in this paper and 
their implementations will be detailed in the next section:
• RxBufferSize,  a  controller  for  dynamic  reception 

buffer adjustment targeted at real-time traffic.
• BestEffortAQM, a queue controller for networks with 

no class of service supports.
• DSSelect,  a  classifier  for  class  of  service  enabled 

networks.
• AQMDSAF,  a  queue  controller  for  assured 

forwarding class of service traffic flows.
• AQMDSBE, a queue controller for best-effort class of 

service traffic flows.
• RTPerf, for fuzzy inference of current network status 

suitability for real-time traffic.
Through  the  development  it  has  been  possible  to 

systematically refine our fuzzy controllers to simulate and 
outperform other  controllers in  a  wide set  of conditions 
and with an overall higher adaptability.

As an additional example, one of the control surfaces 
of  RTPerf  is  shown  in  figure  6.  RTPerf  has  a  4-
dimensional  input space (inputs are current  estimates of 
packet  one-waydelay,  loss,  round-trip-time  and  jitter). 
Figure  6 shows the  control  surface  for  packet  loss  and 
delay jitter. Output is a coefficient of suitability of current 
network  conditions  to  real-time  traffic.  The  output  of 
RTPerf  is  used as  input  to  complementary fuzzy traffic 
controllers  within  the  DiffServ  differentiated  services 
scheme [1,23].

The  fuzzy  systems  described  fit  (depending  on  its 
operational  layer)  into two subsystems commonly found 
on Internet routers:

• For  those  systems  that  perform direct  control  of 
packet forwarding queues, a fuzzy processing module 
must  be  integrated  for  each  output  queue. 
Nevertheless, most current  routers implement the so 
called  virtual  output  queueing  (VOQ)  technique 
[10,7],  so  the  fuzzy controller  would  be  integrated 
into  the  circuitry  of  each  input  port  .  Those  are 
systems  such  as  RxBufferSize,  BestEffortAQM, 
AQMDSAF and AQMDSBE.

• For  higher  layers  processing within  the  DiffServ 
[1] architecture, fuzzy systems must be implemented 
as  additional  engines  in  the  central  network 
processing unit. Those are systems such as DSSelect 
and RTPerf.

 
5. FPGA BASED IMPLEMENTATION RESULTS

We  detail  the  results  of  the  microelectronic 
implementation  of  a  set  of  controller  prototypes  on 
FPGAs.  The  focus is  on  the  implementation  results  for 
FIM modules as they are the key component with higher 
operational  requirements.  Prototypes  have  been 
implemented  on a  Xilinx  Spartan  III  FPGA,  xc3s1500-
fg456-5 device (1.5 millions of equivalent gates) included 
in  the  development  board  employed,  an  AvNet  ADS-
XLX-SP3-EVL1500.

xfvhdl was used to generate VHDL descriptions from 
XFL  specifications  as  described  in  section  3.  xfvhdl 
provides  several  FIM  implementation  options.  In 
particular, we set ROM based storage for the rule base and 
membership functions.

A performance evaluation  of the FIM architecture in 
terms  of  inference  speed,  area  and  power  consumption 
was  conducted.  Synthesis  and  implementation  was 
performed  using  Xilinx  ISE  6.xx,  tools  xst  G.28  (for 
synthesis) and par G.28 (for place and routing) both using 
default configuration.
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Figure 6: Control surface of RTPerf.



 As  for  precision,  a  number  of  configurations  were 
evaluated,  in  particular  results  are  presented  for  the 
following two: 
• 5  bits  for  encoding  inputs  and  outputs,  6  bits  for 

encoding membership functions (556 henceforward).
• 8  bits  for  encoding  inputs  and  outputs,  8  bits  for 

encoding membership functions (888 henceforward).
The  888  configuration  was  found  to  introduce  no 

significant  errors  in  tests  done  through  simulation  and 
emulation. Better precision configurations were evaluated 
and found to provide no better performance than the 888 
configuration.  Prototypes  were  validated  to  match  the 
correct  behavior  of  software  implementations  by  using 
simulated and emulated scenarios, as explained in section 
3.

Table  2 shows  a  set  of  properties  for  each  of  the 
considered  controllers.  These  properties  be  seen  as  an 
indicator of complexity. Properties are: inputs, linguistic 
terms  (for  inputs  and  output)  and  number  of  rules  in 
canonical  form.  We  note  though  that  the  shape 
membership functions introduces an additional complexity 
factor.

System Inputs
Linguistic

terms

Rules 
(canonical  

form)

RxBufferSize 2 5,5,5 25

BestEffortAQM 2 7,7,7 37

DSSelect 2 5,5,2 14

AQMDSAF 2 3,3,4 7

AQMDSBE 2 3,3,4 9

RTPerf 4 5,5,5,5,5 27

Table 2: Characteristics of fuzzy controllers.

The columns  in  table  3 and  table  4 show a  number  of 
metrics  of area  occupation  for  the  fuzzy systems  being 
considered. LUT refers to look-up-tables in the Spartan III 
family  of  FPGAs  from  Xilinx.  These  are  post-
implementation results as reported by the par tool.

System Equivalent  
gates Slices 

Slice  
flip  

flops
LUTs

RxBufferSize 6627 135 108 219

BestEffortAQM 6823 150 110 254

DSSelect 6564 130 105 211

AQMDSAF 6585 130 105 211

AQMDSBE 6492 128 104 212

RTPerf 7641 208 102 367

Table 3: Area results (556 precision).

System
Equivalent  

gates Slices 
Slice  
flip  

flops
LUTs

RxBufferSize 9363 387 138 424

BestEffortAQM 10625 391 140 471

DSSelect 9784 367 137 453

AQMDSAF 9103 375 137 382

AQMDSBE 9150 370 136 390

RTPerf 13790 767 142 844

Table 4: Area results (888 precision).

Table  5 shows for  both  precision  configurations  the 
number of input/output blocks (IOB) occupied as well as 
the achievable inference rate in MFIPS.

Power consumption is always below 335 mW. 

System
556 precision 888 precision

IOBs MFIPS IOBs MFIPS

RxBufferSize 19 164.2 28 125.3

BestEffortAQM 19 102 28 91.9

DSSelect 19 156 28 130.3

AQMDSAF 19 164.4 28 133.4

AQMDSBE 19 162.1 28 130.7

RTPerf 29 122.1 44 113.9

Table 5: I/O Blocks and inference rate.

6



Overall  conclusions  regarding  the  described 
microelectronic  implementation  results  can  be 
summarized as follows:

The  amount  of  complexity  introduced  into  a  router 
system  is  negligible  as  compared  to  the  complexity 
increment that is taking place at present and will happen 
in  foreseeable high  performance routers  [10,13].  On the 
other  hand,  our  solution  provides  a  development 
methodology and a tool chain that fulfill an important gap 
in  current  custom,  unscalable  and  inefficient  design 
schemes  [13].   In  fact,  an  FPGA  approach  to  the 
implementation of router components is in line with the 
current  trend  towards  FPGA  based  development  router 
design of major vendors [7,10, 13].

Power  consumption  of prototype controllers,  between 
13 mW and 335 mW, is negligible as compared to mean 
power  consumption  of current  routing  equipment  (three 
orders of magnitude below the overall consumption of a 
current  high  performance  router).  Mean  power 
consumption  is  4.7  kW  for  a  typical  Cisco  12816 
equipment.  Power  consumption  of  Juniper  routers 
belonging to M and T series ranges from 0.58 kW up to 
6.5 kW [12].

As for  inference speed,  prototypes implemented on a 
Xilinx Spartan III FPGA could achieve inference speeds 
around 100 MFIPS. Routers from the Cisco 12000 series 
process up to 25 millions of packets per second per input 
port. Thus, even our prototype implementation on middle 
cost FPGAs can provide the required inference speed in 
current high performance routers.

Thus,  the  described  prototypes  satisfy  operational 
requirements  of  current  high  performance  routing 
equipment  in  terms  of  correct  behavior,  complexity, 
precision, inference rate and power consumption.

6. CONCLUSIONS AND FUTURE WORK

Research results lead to the conclusion that fuzzy systems 
can help solve current problems in Internet traffic control. 
However, efficient hardware implementations are required 
to  fulfill  common  operational  requirements.  We  have 
presented a prototyping platform as well as a methodology 
and  companion  tool  chain  for  the  development  and 
microelectronic  implementation  of  fuzzy  controllers  for 
Internet traffic. 

A set of traffic controllers have been implemented on 
FPGAs  as  prototypes  which  have  been  validated  to 
perform correctly and  better  than  current  traffic  control 
schemes.  Implementation  results  were  shown  to  satisfy 
operational  requirements  of  current  and  future  high 
performance routing hardware in terms of both inference 
speed  and  resource  consumption.  In  addition,  the 
prototypes have been designed for easy integration  with 
routing architectures currently deployed in the Internet.

Note that  introducing the fuzzy set  theory formalism 
and  a  high  level  formal  language  for  traffic  controllers 
specification opens a research area on the improvement of 
traffic  controllers  by  means  of  systematic  adjustment 
techniques  developed  for  fuzzy  systems.  These  include 
advanced  fuzzy  operators  and  automatic  learning  and 
adjustment  techniques  such  as  those  based  on  genetic 
algorithms and neural networks.

The  open  prototyping  platform  together  with  the 
methodology and tool  chain  presented pave the way for 
further  development  of  efficient  intelligent  traffic 
controllers  but  also  foster  the  development  of  fuzzy 
systems for a number of areas where intelligent analysis 
systems are sought, such as packet and flow identification, 
classification and filtering, among many others.

7. REFERENCES

[1] S. Blake, D.L. Black, M.A. Carlson, E. Davies, Z. Wang,W. 
Weiss, “An Architecture for Differentiated Services,” RFC 
2475, Internet Engineering Task Force, Network Working 
Group, December 1998. Category: Informational.
http://www.ietf.org/html.charters/diffserv-charter.html.

[2]  A.  Cabrera,  S.  Sánchez-Solano,  P.  Brox,  A.  Barriga,  R. 
Senhadji.  “Hardware/Software Codesign of Configurable Fuzzy 
Control  Systems”.  Applied  Soft  Computing,  Vol.  4,  n.  3,  pp. 
271-285, December 2004.

[3] H.C. Cho, M.S. Fadali, H. Lee, “Dynamic Queue Scheduling 
using Fuzzy Systems for Internet Routers,”  IEEE International 
Conference on Fuzzy Systems (FUZZ-IEEE) 2005, Reno, USA, 
May 2005.

[4] Cisco Systems, Inc. “Cisco Series 12000 router performance 
evaluation.  2005. 
http://www.cisco.com/warp/public/765/tools/quickreference/rout
erperformance.pdf.

[5] G. Di Fatta, F. Hoffmann, G.L. Re, A. Urso. “A Genetic 
Algorithm for the Design of a Fuzzy Controller for Active Queue 
Management,” IEEE Transactions on Systems, Man and 
Cybernetics, Part C: Applications and Reviews, 33 (3), pp. 313–
334, August 2003.

[6] M. Dolenc,  T. Markovic. PCI IP Core Specification.  Rev. 
1.2, OpenCores Organization, July 2004.
http://www.opencores.org/pdownloads.cgi/list/pci?no_loop=yes.

[7] W.J. Goralski, Juniper and Cisco Routing. Policy and 
Protocols for Multivendor IP Networks. Wiley Publishing Inc., 
Indianapolis, Indiana, 2002. ISBN: 0-471-21592-9.

[8] Y. HadJadj-Aoul, A. Nafaa, D. Negru, A. Mehaoua. “FAFC: 
Fast  Adaptive  Fuzzy AQM Controller  for  TCP/IP Networks,” 
IEEE  Global  Telecommunications  Conference.  Dallas,  Texas, 
USA, November 2004.

7

http://www.cisco.com/warp/public/765/tools/quickreference/routerperformance.pdf
http://www.cisco.com/warp/public/765/tools/quickreference/routerperformance.pdf
http://www.ietf.org/html.charters/diffserv-charter.html


[9]  R.  Herveille  et  al.  WISHBONE  System-on-Chip  (SoC) 
Interconnection  Arhitecture  for  Portable  IP  Cores,   Revision 
B.3,  OpenCores  Organization,  September  2002. 
http://www.opencores.org/projects.cgi/web/wishbone/wishbone.

[10] M. Hidell, P. Sjödin, O. Hagsand, “Control and Forwarding 
Plane Interaction in Distributed Routers,”. Technical Report 
TRITA-S3-LCN-0501, Laboratory for Communication Networks, 
Department of Signals, Sensors, and Systems. KTH Royal 
Institute of Technology, Stockholm, Sweden, March 2005. 
http://web.it.kth.se/~mahidell/.

[11] Information Sciences Institute, University of Southern 
California, The Network Simulator – ns-2, November 2005.
 http://www.isi.edu/nsnam/ns/.

[12]  Juniper  Networks  Inc.,  “Juniper  Networks  M-series 
Multiservice Edge Routing Portfolio,” November 2005.
http://www.juniper.net/products/mseries/.

[13] D. Lampret et al. OpenRISC 1000 Architecture Manual. 
OpenCores Organization, June 2005. 
http://www.opencores.org/projects.cgi/web/or1k.

[14] N. McKeown. “Growth in Router Capacity,” IPAM 
Workshop on  Large-Scale Communication Networks. Lake 
Arrowhead, CA, USA, October 2003.
http://tiny-tera.stanford.edu/˜nickm/talks/index.html.

[15]  F.J.  Moreno-Velo,  I.  Baturone,  S.  Sánchez-Solano,  A. 
Barriga. “Rapid Design of Fuzzy Systems With Xfuzzy,”  FUZZ-
IEEE03.  The  12th  IEEE  International  Conference  on  Fuzzy 
Systems, vol. 1, pp. 342-347. May 2003.
 http://www.imse.cnm.es/Xfuzzy/xfpapers.html.

[16]  F.J.  Moreno-Velo,  S.  Sánchez-Solano,  I.  Baturone  A. 
Barriga , D.R. López, “XFL3: a New Fuzzy System Specification 
Language,”  5th  WSES/IEEE  Multiconference  on  Circuits, 
Systems, Communications and Computers (CSCC'01), pp. 361-
366. Rethymon, July 2001.
 http://www.imse.cnm.es/Xfuzzy/xfpapers.html.

[17]  OpenCores  Organization.  OpenCores.Org:  Free  Open 
Source IP Cores and Chip Design.
http://www.opencores.org, November 2005.

[18] R. Resende, N. Nassif, A. Silva, M. Siqueira, A.E. da Silva, 
M. Lima-Marques,  “Quality of Service control in IP networks 
using  Fuzzy  Logic  for  Policy  Condition  Evaluation,”  IEEE 
International Conference on Fuzzy Systems (FUZZ-IEEE) 2005, 
Reno, USA, May 2005.

[19] R.  Usselmann  et  al.,  WB/OPB  &  OPB/WB  Interface 
Wrapper: Overview, September 2004.
http://www.opencores.org/projects.cgi/web/opb_wb_wrapper.

[20] C. Wang , R. Xiao, K. Sohraby, B. Li, S. Li. “Active queue 
management based on fuzzy logic,” Journal of Information and 
Computational Science, February  2005.
http://comp.uark.edu/~cgwang/html/publication.html.

[21] M. H. Yaghmaee. “Design and Performance Evaluation of a 
Fuzzy Based  Traffic  Conditioner  for  Differentiated  Services,” 
Computer Networks, 47 (6), pp. 847-869, January 2005.

[22] R. Zhang, Y.A. Phillis, V.S. Kouigoglou. Fuzzy Control of  
Queuing Systems. Springer-Verlag, Surrey, UK, January 2004. 
ISBN: 1-85233-824-5

[23] R. Zhang, Y.A. Phillis, J.Ma. “A Fuzzy Approach to the 
Balance of Drop and Delay Priorities in Differentiated Services 
Networks,” IEEE Transactions on Fuzzy Systems, 11 (6), pp. 
840-846, December 2003. http://www.sics.se/˜runtong/.

8

http://www.sics.se/
http://comp.uark.edu/~cgwang/html/publication.html
http://www.opencores.org/projects.cgi/web/opb_wb_wrapper
http://www.opencores.org/
http://www.imse.cnm.es/Xfuzzy/xfpapers.html
http://www.imse.cnm.es/Xfuzzy/xfpapers.html
http://tiny-tera.stanford.edu/
http://www.opencores.org/projects.cgi/web/or1k
http://www.juniper.net/products/mseries/
http://www.isi.edu/nsnam/ns/
http://web.it.kth.se/~mahidell/
http://www.opencores.org/projects.cgi/web/wishbone/wishbone

