
FPGA BASED IMPLEMENTATION OF FUZZY CONTROLLERS FOR
INTERNET TRAFFIC

Federico Montesino Pouzols1, Ángel Barriga Barros1, Diego R. Lopez2, Santiago Sánchez-Solano1

1Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC
2RedIRIS, Red Académica y de Investigación Española

Federico.Montesino@imse.cnm.es, Angel.Barriga@imse.cnm.es, Diego.Lopez@rediris.es,
Santiago.Sanchez@imse.cnm.es

ABSTRACT

Recent research results propose and show the usefulness
of a fuzzy control based approach to the development of
intelligent systems for congestion control in Internet
routers. However, adoption of this new technology is
handicapped because of operational requirements, mostly
in terms of inference speed, a hard constrain on the
practical implementation of key traffic controlling
systems. We report on the implementation of intelligent
fuzzy controllers for Internet traffic using an FPGA based
prototyping platform. A development methodology and a
tool chain, a flexible and open prototyping platform, a set
of fuzzy controllers and implementation results for a
number of traffic controllers are presented. Our prototypes
are shown to satisfy the requirements of high performance
routing hardware deployed in the current Internet.

1. INTRODUCTION

The development of intelligent systems for congestion
control (and traffic control in general) in the Internet is an
open research area. Recent results propose and show the
usefulness of a fuzzy control based approach
[3,23,20,18,8,21].

However, operational requirements of Internet traffic
controlling systems, mostly in terms of processing speed,
impose a hard constrain on its practical implementation.
Thus, a limiting factor for the real-world deployment of
fuzzy controllers for Internet traffic is the need for
efficient implementations that can achieve the high
inference rates required by current and future high
performance networks. Microelectronic implementations
with specific and efficient architectures must be employed
in this application area of fuzzy logic based systems,
specially in the case of current and future high
performance network backbones [14].

More generally, Internet traffic dynamics remains an
open topic of research. Soft computing systems can
provide intelligent solutions for both traffic analysis and
control provided they can operate in real-time in current
high speed networks. Thus, the availability of efficient

microelectronic implementations has two important
implications:

• Opens a new application area of fuzzy systems in
Internet.

• Fosters the research on fuzzy logic based solutions
to Internet traffic control and analysis.

We report on the implementation of intelligent fuzzy
controllers for Internet traffic using an FPGA based
prototyping platform. Prototype implementation results
are shown to satisfy the requirements of high performance
routing hardware deployed in the current Internet.

In section 2, we present an open prototyping platform
defined for easing the development and validation of
Internet traffic controllers. Section 3 describes a
companion development methodology and tool chain that
covers the full design flow from specification to prototype
implementation and validation. A representative subset of
the traffic controllers we have implemented is outlined in
section 4. In section 5, prototypes hardware
implementation results are given. Finally, we summarize
conclusions from our work and future steps.

2. PROTOTYPING PLATFORM

Throughout more than a decade, strategies and
methodologies for prototyping fuzzy logic based
controllers have been developed. To date, most work on
this topic has been focused on industrial applications [2].
Considering the specific requirements as well as the high
cost and complexity of high performance routers currently
deployed on the Internet, we have developed a flexible
prototyping platform for Internet traffic controllers. This
platform has been defined with a twofold objective:
• Easing the microelectronic implementation of

prototypes of Internet traffic controllers.
• Providing a complete set of tools and environment for

realistic validation.
Our prototype development architecture, depicted in

figure 1, is based on a conventional PC equipped with an
FPGA development board with PCI interface, thus

1

mailto:Federico.Montesino@imse.cnm.es
mailto:Diego.Lopez@rediris.es
mailto:Angel.Barriga@imse.cnm.es

making a flexible and cheap solution with no specific
hardware requirements yet able to emulate the behavior of
complex and expensive routing equipment. As shown in
figure 2, when implementing fuzzy systems, we consider
two main function blocks: those directly related to fuzzy
inference and those that can be classified as auxiliary
functions (such as initialization, timing, pre/post-
processing, etc.) [2]. For the implementation of prototypes
of fuzzy controllers for Internet traffic the following
model is used:

• A fuzzy inference module (FIM) is implemented
on hardware described by means of VHDL according
to an specific implementation architecture tailored for
efficient and fast fuzzy inference. The methodology
and tools employed for the development of the FIM is
described in the next section.

• All auxiliary functions are implemented as
software. Software can run on the PC operating
system as well as on optional components
implemented on the FPGA of the development board.

 A flexible and open architecture for implementing fuzzy
systems on the FPGA has been defined. Within this
architecture, depicted in figure 3, FIM modules are
integrated as subsystems of a potentially complex and
reconfigurable fuzzy logic based digital system.

Interconnection between the fuzzy digital system and
the host PC is done through a standard PCI bus. The
internal bus of the fuzzy digital system is a WISHBONE
[9] bus , a SoC interconnection architecture for portable IP
cores, that connects a variable number of components :

• FIM.
• PCI-WISHBONE bridge and WISHBONE bus
controller.
• Additional cores (Network Interface Card,
Processor , etc.).

We are currently using an AvNet ADS-XLX-SP3-
EVL1500 FPGA development board. Both the
WISHBONE [9] bus and the PCI-WISHBONE Bridge [6]
IP cores have been developed under free distribution
licenses by the OpenCores [17] organization as well as
other entities. WISHBONE Systems can easily interface
with OPB [19] based systems through the WISHBONE-
OPB bridge provided as a plug-in for Xilinx EDK and
also available under a free distribution license.

 This way, software tasks can be defined using common
programming languages and can be run on the generic
purpose processing units of the PC as well as on specific
processing units included in the FPGA. For instance, a
fuzzy logic based traffic analysis application can be
implemented incorporating an OpenRisc Core for which
the GNU/Linux operating system is available.

The PCI interface of the prototypes eases integration
with routing architectures by major vendors. Within
routing architectures currently deployed in the Internet
[10], the fuzzy controllers could be seamlessly integrated
as processing engines whether at the NPU and/or the
output/input cards depending on the quality of service
architecture implemented on the router.

In addition, when the development board employed
includes a network interface card, as is the case with our
AvNet board, a whole fuzzy logic based traffic analysis
application can be implemented as a standalone SoPC on
the FPGA.

2

Figure 1: Prototyping platform scheme.

Development board
PC

Transport layer

Network layer

PCI Bus

Applications

(Network
simulator)

Operating
system kernel

FPGA

Figure 2: Hardware and software tasks.

Hardware Software

Fuzzy
Inference
Module
(FIM)

Interfacing,
Initialization,

Pre/post
Processing

Timing
...

Fuzzy system

3. DEVELOPMENT METHODOLOGY AND TOOL
CHAIN

As a result of more than 10 years of research experience
on the digital implementation of fuzzy systems, the fuzzy
group at IMSE has developed methodologies and CAD
tools that fulfill the design flow of fuzzy systems. We
leverage on the Xfuzzy [15] CAD suite of tools and a
methodology [2] for the development of fuzzy controllers
to define a methodology and tool chain tailored for the
development of fuzzy Internet traffic controllers.

The design flow and tool chain we have defined and
used to develop fuzzy inference modules is depicted in
figure 4.

The design flow covers the whole development process,
from initial specification to final implementation whether
as software or hardware. The first development stage
(description) is performed using a high level fuzzy
systems specification language, XFL [16], which can later
be turned into C and VHDL code among other
implementation options.

The tool chain includes:
• The xfc and xfcpp tools (included in Xfuzzy), which

turns an XFL specification into C and C++ code.
• The xfvhdl tool (included in Xfuzzy), which turns an

XFL specification into VHDL code generated for a

specific efficient architecture for the implementation
of fuzzy systems [15].

• ns-2 [11], an open network simulator widely spread
within the Internet research community.

• Operating system kernel (currently Linux and
FreeBSD).

The development stages after specification have been
tailored for Internet traffic controller development as
follows.

For network simulation, we have used ns-2. ns-2 is an
object oriented discrete event driven simulator with
support for a vast variety of transport protocols, queueing
systems, routing schemes and access media, thus enabling
us to evaluate the performance of traffic controllers under
complex and realistic simulated scenarios. Fuzzy
controllers are integrated into ns-2 as components
implemented in C.

Verification can be performed over software and
hardware implementations of fuzzy controllers. Software
verification is performed over a controller implementation
within the kernel of the general purpose operating system
of the PC. For verifying hardware prototypes of FIMs, two
procedures have been considered:

3

Figure 4: Design flow and tool chain.

SoftwareHardware

Description

XFL

Simulation

Network simulator (ns2)

Verification

HW/SW

Ns2, FPGA, kernelNs2, FPGA, kernel

 ns2, PC kernel

FIM on fuzzy SoPC PC kernel, SoPC

Ns2, FPGA, kernel

Prototype

fuzzy SoPC + PC

xfc/xfcpp

xfvhdl

Figure 3: Fuzzy systems prototyping architecture.

WISHBONE-PCI
Bridbe

PCI
 bus

WISHBONE
 bus

NIC

WISHBONE
Controller

Fuzzy SoPC

CPU

...

FIM

Optional Cores

...

• Verification by means of network simulators. To this
end, code and drivers to make it possible to access the
FIM in the FPGA development card from ns-2 has
been developed.

• Verification through emulated scenarios where a
router is emulated by means of the prototyping
platform. Validation in real or emulated scenarios is
also possible with our prototyping architecture by
using the prototyping PC as a router. This
accomplished by replacing queue control functionality
in the operating system network layer with
functionality provided by the FIM in the development
board. To this end, kernel drivers have been
developed to make it possible to access the fuzzy
controller in the FPGA development card from
networking modules in the operating system kernel.
Drivers have been developed for FreeBSD and Linux
kernels.

We have defined as general hardware-software
partition the implementation on hardware of the FIM
module whereas all other tasks are implemented as
software.

Implementation of novel hardware components and
experimental deployment on high-end equipment poses
major practical problems. Deployment on high-end
(around 1 million euro cost per unit) routing equipment
requires the adoption of a new technology by vendors of
routing hardware (a market with high inertia), which is a
long term objective of our research. Nonetheless, by
means of our prototype architecture, validation can be
performed the same way as verification through emulated
scenarios as described above.

By following a well defined development methodology,
we provide a much more efficient and formal approach
that those currently used for Internet routers development.

4. FUZZY INTERNET TRAFFIC CONTROLLERS

A number of research results have been reported on the
application of fuzzy systems to the general area of active
queue management [8,18,3] as well as traffic control with
support for differentiated quality of service [23,21,1].
Recent results have also been made on the development of
a fuzzy queueing theory [22] as an extension to classical
queueing theory, which is the basis of many traffic
processing mechanisms in the current Internet.

The aforementioned fuzzy traffic controllers manage
packet queues and are targeted at core routers. These
controllers show some similarities to classic real time
regulators, such as PD controllers. Basically, the inputs to
the fuzzy system are two: packet queue current size and
packet queue variation. The fuzzy inference system must
produce as output the routing decision to apply to the last

packet received at the router. Some authors have applied
fuzzy-PD techniques to Internet traffic control [5].

We have considered proposals by independent authors
but preferred to develop new systems that take advantage
of the prototyping platform, methodology and tool chain
outlined in previous sections. We have developed
Mamdani fuzzy controllers considering simplicity and
reduced number of rules as main design constrains. The
motivation being that because of the complexity of
Internet traffic control it is not enough to design and
adjust systems so that that they can exhibit near-optimal
performance within a small collection of simulated
scenarios. Instead, major objectives are interpretability,
flexibility and adaptability, which require testing on a
broad range of complex simulated and real scenarios. We
also note that simplicity in terms of the number of rules
will ease wide-scale adoption of fuzzy controllers as
experimental Internet traffic controlling systems.

As an example we outline one of the systems
developed, named BestEffortAQM (Active Queue
Management for best effort service class), which
implements a traffic controller for congestion control on
routers which only best-effort class of service. The rule
base is presented in table 1 whereas the resulting control
surface is depicted in figure 5.

Two inputs and one output are defined, as described
above. Input ei is the deviation between the number of
currently queued packets and a desired value reference,
while input ei-1 is the deviation at the last time interval. 7
linguistic terms are defined for both inputs, ranging NVB,
NB, NS, Z, PS, PB, PVB, for increasing differences. The
output of the system, pi, is defined as a probability value
for discarding the next packet to be routed. 7 linguistic
terms are defined for increasing levels of probability
ranging Z, T, VS, S, B, VB, H.

4

Figure 5: Control surface of BestEffortAQM.

pi

ei-1

NVB NB NS Z PS PB PVB

ei

NVB H H H H H H H

NB B B B VB VB H H

NS T VS S S B VB VB

Z Z Z Z T VS S B

PS Z Z Z Z T T VS

PB Z Z Z Z Z Z T

PVB Z Z Z Z Z Z Z

Table 1: AQMBestEffort Rule Base.

A number of fuzzy controllers for Internet traffic have
been developed (implementation results are given in the
next section). The performance of this new fuzzy systems
as well as other independent proposals and traditional
traffic controllers has been compared in terms of stability,
convergence speed, fairness and other criteria in a set of
network scenarios.

The following systems are considered in this paper and
their implementations will be detailed in the next section:
• RxBufferSize, a controller for dynamic reception

buffer adjustment targeted at real-time traffic.
• BestEffortAQM, a queue controller for networks with

no class of service supports.
• DSSelect, a classifier for class of service enabled

networks.
• AQMDSAF, a queue controller for assured

forwarding class of service traffic flows.
• AQMDSBE, a queue controller for best-effort class of

service traffic flows.
• RTPerf, for fuzzy inference of current network status

suitability for real-time traffic.
Through the development it has been possible to

systematically refine our fuzzy controllers to simulate and
outperform other controllers in a wide set of conditions
and with an overall higher adaptability.

As an additional example, one of the control surfaces
of RTPerf is shown in figure 6. RTPerf has a 4-
dimensional input space (inputs are current estimates of
packet one-waydelay, loss, round-trip-time and jitter).
Figure 6 shows the control surface for packet loss and
delay jitter. Output is a coefficient of suitability of current
network conditions to real-time traffic. The output of
RTPerf is used as input to complementary fuzzy traffic
controllers within the DiffServ differentiated services
scheme [1,23].

The fuzzy systems described fit (depending on its
operational layer) into two subsystems commonly found
on Internet routers:

• For those systems that perform direct control of
packet forwarding queues, a fuzzy processing module
must be integrated for each output queue.
Nevertheless, most current routers implement the so
called virtual output queueing (VOQ) technique
[10,7], so the fuzzy controller would be integrated
into the circuitry of each input port . Those are
systems such as RxBufferSize, BestEffortAQM,
AQMDSAF and AQMDSBE.

• For higher layers processing within the DiffServ
[1] architecture, fuzzy systems must be implemented
as additional engines in the central network
processing unit. Those are systems such as DSSelect
and RTPerf.

5. FPGA BASED IMPLEMENTATION RESULTS

We detail the results of the microelectronic
implementation of a set of controller prototypes on
FPGAs. The focus is on the implementation results for
FIM modules as they are the key component with higher
operational requirements. Prototypes have been
implemented on a Xilinx Spartan III FPGA, xc3s1500-
fg456-5 device (1.5 millions of equivalent gates) included
in the development board employed, an AvNet ADS-
XLX-SP3-EVL1500.

xfvhdl was used to generate VHDL descriptions from
XFL specifications as described in section 3. xfvhdl
provides several FIM implementation options. In
particular, we set ROM based storage for the rule base and
membership functions.

A performance evaluation of the FIM architecture in
terms of inference speed, area and power consumption
was conducted. Synthesis and implementation was
performed using Xilinx ISE 6.xx, tools xst G.28 (for
synthesis) and par G.28 (for place and routing) both using
default configuration.

5

Figure 6: Control surface of RTPerf.

 As for precision, a number of configurations were
evaluated, in particular results are presented for the
following two:
• 5 bits for encoding inputs and outputs, 6 bits for

encoding membership functions (556 henceforward).
• 8 bits for encoding inputs and outputs, 8 bits for

encoding membership functions (888 henceforward).
The 888 configuration was found to introduce no

significant errors in tests done through simulation and
emulation. Better precision configurations were evaluated
and found to provide no better performance than the 888
configuration. Prototypes were validated to match the
correct behavior of software implementations by using
simulated and emulated scenarios, as explained in section
3.

Table 2 shows a set of properties for each of the
considered controllers. These properties be seen as an
indicator of complexity. Properties are: inputs, linguistic
terms (for inputs and output) and number of rules in
canonical form. We note though that the shape
membership functions introduces an additional complexity
factor.

System Inputs
Linguistic

terms

Rules
(canonical

form)

RxBufferSize 2 5,5,5 25

BestEffortAQM 2 7,7,7 37

DSSelect 2 5,5,2 14

AQMDSAF 2 3,3,4 7

AQMDSBE 2 3,3,4 9

RTPerf 4 5,5,5,5,5 27

Table 2: Characteristics of fuzzy controllers.

The columns in table 3 and table 4 show a number of
metrics of area occupation for the fuzzy systems being
considered. LUT refers to look-up-tables in the Spartan III
family of FPGAs from Xilinx. These are post-
implementation results as reported by the par tool.

System Equivalent
gates Slices

Slice
flip

flops
LUTs

RxBufferSize 6627 135 108 219

BestEffortAQM 6823 150 110 254

DSSelect 6564 130 105 211

AQMDSAF 6585 130 105 211

AQMDSBE 6492 128 104 212

RTPerf 7641 208 102 367

Table 3: Area results (556 precision).

System
Equivalent

gates Slices
Slice
flip

flops
LUTs

RxBufferSize 9363 387 138 424

BestEffortAQM 10625 391 140 471

DSSelect 9784 367 137 453

AQMDSAF 9103 375 137 382

AQMDSBE 9150 370 136 390

RTPerf 13790 767 142 844

Table 4: Area results (888 precision).

Table 5 shows for both precision configurations the
number of input/output blocks (IOB) occupied as well as
the achievable inference rate in MFIPS.

Power consumption is always below 335 mW.

System
556 precision 888 precision

IOBs MFIPS IOBs MFIPS

RxBufferSize 19 164.2 28 125.3

BestEffortAQM 19 102 28 91.9

DSSelect 19 156 28 130.3

AQMDSAF 19 164.4 28 133.4

AQMDSBE 19 162.1 28 130.7

RTPerf 29 122.1 44 113.9

Table 5: I/O Blocks and inference rate.

6

Overall conclusions regarding the described
microelectronic implementation results can be
summarized as follows:

The amount of complexity introduced into a router
system is negligible as compared to the complexity
increment that is taking place at present and will happen
in foreseeable high performance routers [10,13]. On the
other hand, our solution provides a development
methodology and a tool chain that fulfill an important gap
in current custom, unscalable and inefficient design
schemes [13]. In fact, an FPGA approach to the
implementation of router components is in line with the
current trend towards FPGA based development router
design of major vendors [7,10, 13].

Power consumption of prototype controllers, between
13 mW and 335 mW, is negligible as compared to mean
power consumption of current routing equipment (three
orders of magnitude below the overall consumption of a
current high performance router). Mean power
consumption is 4.7 kW for a typical Cisco 12816
equipment. Power consumption of Juniper routers
belonging to M and T series ranges from 0.58 kW up to
6.5 kW [12].

As for inference speed, prototypes implemented on a
Xilinx Spartan III FPGA could achieve inference speeds
around 100 MFIPS. Routers from the Cisco 12000 series
process up to 25 millions of packets per second per input
port. Thus, even our prototype implementation on middle
cost FPGAs can provide the required inference speed in
current high performance routers.

Thus, the described prototypes satisfy operational
requirements of current high performance routing
equipment in terms of correct behavior, complexity,
precision, inference rate and power consumption.

6. CONCLUSIONS AND FUTURE WORK

Research results lead to the conclusion that fuzzy systems
can help solve current problems in Internet traffic control.
However, efficient hardware implementations are required
to fulfill common operational requirements. We have
presented a prototyping platform as well as a methodology
and companion tool chain for the development and
microelectronic implementation of fuzzy controllers for
Internet traffic.

A set of traffic controllers have been implemented on
FPGAs as prototypes which have been validated to
perform correctly and better than current traffic control
schemes. Implementation results were shown to satisfy
operational requirements of current and future high
performance routing hardware in terms of both inference
speed and resource consumption. In addition, the
prototypes have been designed for easy integration with
routing architectures currently deployed in the Internet.

Note that introducing the fuzzy set theory formalism
and a high level formal language for traffic controllers
specification opens a research area on the improvement of
traffic controllers by means of systematic adjustment
techniques developed for fuzzy systems. These include
advanced fuzzy operators and automatic learning and
adjustment techniques such as those based on genetic
algorithms and neural networks.

The open prototyping platform together with the
methodology and tool chain presented pave the way for
further development of efficient intelligent traffic
controllers but also foster the development of fuzzy
systems for a number of areas where intelligent analysis
systems are sought, such as packet and flow identification,
classification and filtering, among many others.

7. REFERENCES

[1] S. Blake, D.L. Black, M.A. Carlson, E. Davies, Z. Wang,W.
Weiss, “An Architecture for Differentiated Services,” RFC
2475, Internet Engineering Task Force, Network Working
Group, December 1998. Category: Informational.
http://www.ietf.org/html.charters/diffserv-charter.html.

[2] A. Cabrera, S. Sánchez-Solano, P. Brox, A. Barriga, R.
Senhadji. “Hardware/Software Codesign of Configurable Fuzzy
Control Systems”. Applied Soft Computing, Vol. 4, n. 3, pp.
271-285, December 2004.

[3] H.C. Cho, M.S. Fadali, H. Lee, “Dynamic Queue Scheduling
using Fuzzy Systems for Internet Routers,” IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE) 2005, Reno, USA,
May 2005.

[4] Cisco Systems, Inc. “Cisco Series 12000 router performance
evaluation. 2005.
http://www.cisco.com/warp/public/765/tools/quickreference/rout
erperformance.pdf.

[5] G. Di Fatta, F. Hoffmann, G.L. Re, A. Urso. “A Genetic
Algorithm for the Design of a Fuzzy Controller for Active Queue
Management,” IEEE Transactions on Systems, Man and
Cybernetics, Part C: Applications and Reviews, 33 (3), pp. 313–
334, August 2003.

[6] M. Dolenc, T. Markovic. PCI IP Core Specification. Rev.
1.2, OpenCores Organization, July 2004.
http://www.opencores.org/pdownloads.cgi/list/pci?no_loop=yes.

[7] W.J. Goralski, Juniper and Cisco Routing. Policy and
Protocols for Multivendor IP Networks. Wiley Publishing Inc.,
Indianapolis, Indiana, 2002. ISBN: 0-471-21592-9.

[8] Y. HadJadj-Aoul, A. Nafaa, D. Negru, A. Mehaoua. “FAFC:
Fast Adaptive Fuzzy AQM Controller for TCP/IP Networks,”
IEEE Global Telecommunications Conference. Dallas, Texas,
USA, November 2004.

7

http://www.cisco.com/warp/public/765/tools/quickreference/routerperformance.pdf
http://www.cisco.com/warp/public/765/tools/quickreference/routerperformance.pdf
http://www.ietf.org/html.charters/diffserv-charter.html

[9] R. Herveille et al. WISHBONE System-on-Chip (SoC)
Interconnection Arhitecture for Portable IP Cores, Revision
B.3, OpenCores Organization, September 2002.
http://www.opencores.org/projects.cgi/web/wishbone/wishbone.

[10] M. Hidell, P. Sjödin, O. Hagsand, “Control and Forwarding
Plane Interaction in Distributed Routers,”. Technical Report
TRITA-S3-LCN-0501, Laboratory for Communication Networks,
Department of Signals, Sensors, and Systems. KTH Royal
Institute of Technology, Stockholm, Sweden, March 2005.
http://web.it.kth.se/~mahidell/.

[11] Information Sciences Institute, University of Southern
California, The Network Simulator – ns-2, November 2005.
 http://www.isi.edu/nsnam/ns/.

[12] Juniper Networks Inc., “Juniper Networks M-series
Multiservice Edge Routing Portfolio,” November 2005.
http://www.juniper.net/products/mseries/.

[13] D. Lampret et al. OpenRISC 1000 Architecture Manual.
OpenCores Organization, June 2005.
http://www.opencores.org/projects.cgi/web/or1k.

[14] N. McKeown. “Growth in Router Capacity,” IPAM
Workshop on Large-Scale Communication Networks. Lake
Arrowhead, CA, USA, October 2003.
http://tiny-tera.stanford.edu/˜nickm/talks/index.html.

[15] F.J. Moreno-Velo, I. Baturone, S. Sánchez-Solano, A.
Barriga. “Rapid Design of Fuzzy Systems With Xfuzzy,” FUZZ-
IEEE03. The 12th IEEE International Conference on Fuzzy
Systems, vol. 1, pp. 342-347. May 2003.
 http://www.imse.cnm.es/Xfuzzy/xfpapers.html.

[16] F.J. Moreno-Velo, S. Sánchez-Solano, I. Baturone A.
Barriga , D.R. López, “XFL3: a New Fuzzy System Specification
Language,” 5th WSES/IEEE Multiconference on Circuits,
Systems, Communications and Computers (CSCC'01), pp. 361-
366. Rethymon, July 2001.
 http://www.imse.cnm.es/Xfuzzy/xfpapers.html.

[17] OpenCores Organization. OpenCores.Org: Free Open
Source IP Cores and Chip Design.
http://www.opencores.org, November 2005.

[18] R. Resende, N. Nassif, A. Silva, M. Siqueira, A.E. da Silva,
M. Lima-Marques, “Quality of Service control in IP networks
using Fuzzy Logic for Policy Condition Evaluation,” IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE) 2005,
Reno, USA, May 2005.

[19] R. Usselmann et al., WB/OPB & OPB/WB Interface
Wrapper: Overview, September 2004.
http://www.opencores.org/projects.cgi/web/opb_wb_wrapper.

[20] C. Wang , R. Xiao, K. Sohraby, B. Li, S. Li. “Active queue
management based on fuzzy logic,” Journal of Information and
Computational Science, February 2005.
http://comp.uark.edu/~cgwang/html/publication.html.

[21] M. H. Yaghmaee. “Design and Performance Evaluation of a
Fuzzy Based Traffic Conditioner for Differentiated Services,”
Computer Networks, 47 (6), pp. 847-869, January 2005.

[22] R. Zhang, Y.A. Phillis, V.S. Kouigoglou. Fuzzy Control of
Queuing Systems. Springer-Verlag, Surrey, UK, January 2004.
ISBN: 1-85233-824-5

[23] R. Zhang, Y.A. Phillis, J.Ma. “A Fuzzy Approach to the
Balance of Drop and Delay Priorities in Differentiated Services
Networks,” IEEE Transactions on Fuzzy Systems, 11 (6), pp.
840-846, December 2003. http://www.sics.se/˜runtong/.

8

http://www.sics.se/
http://comp.uark.edu/~cgwang/html/publication.html
http://www.opencores.org/projects.cgi/web/opb_wb_wrapper
http://www.opencores.org/
http://www.imse.cnm.es/Xfuzzy/xfpapers.html
http://www.imse.cnm.es/Xfuzzy/xfpapers.html
http://tiny-tera.stanford.edu/
http://www.opencores.org/projects.cgi/web/or1k
http://www.juniper.net/products/mseries/
http://www.isi.edu/nsnam/ns/
http://web.it.kth.se/~mahidell/
http://www.opencores.org/projects.cgi/web/wishbone/wishbone

