
1

AN EFFECTIVE SCHEDULING ALGORITHM TARGETING HIGH
UTILIZATION OF RECONFIGURABLE DEVICES IN RECONFIGURABLE

CO-SYNTHESIS SYSTEM ARCHITECTURE

Ji-Han Park(1), Sang-Hoon Kwak(1), Fahad Ali Mujahid(1), Jeong-A Lee(2) and Dong-Soo Har(1)

(1) Department of Information and Communications, Gwangju Institute of Science and Technology, Republic of Korea.
(2) Department of Computer Engineering, Chosun University, Republic of Korea.

hardon@gist.ac.kr

ABSTRACT

A heuristic algorithm that maps data-processing tasks onto either

CPU or reconfigurable devices, while targeting high utilization of
reconfigurable devices, is presented. The algorithm tries to
minimize the number of reconfigurable devices with the help of
run-time-reconfiguration and various reconfiguration overhead
time into account, while the system configuration satisfies the
resource constraints. Experimental results show this algorithm’s
relative effectiveness to conventional co-synthesis algorithm in
embedded computing systems.

1. INTRODUCTION

Hardware-software co-synthesis creates an embedded

computing system architecture to meet performance, power
and cost goals [1]. This paper describes a new scheduling
algorithm for reconfigurable co-synthesis system
architecture in distributed, embedded computing systems.
The algorithm synthesizes a system consisting of CPU,
memory, bus, and many reconfigurable devices.
Conventional architecture uses a heterogeneous shared

memory multiprocessor and application-specific hardware
(e.g., ASICs, custom SoCs) as the target architecture, as
shown in Figure 1. A CPU executes simple tasks, while
computationally intensive tasks are performed on the
application-specific hardware.
In contrast, we use reconfigurable devices (e.g., FPGA)

instead of application-specific hardwares to execute many
tasks, since they can be reconfigured during execution,
even if they have reconfiguration time overhead.
This paper is organized as follows. Section 2 describes

related works. Section 3 describes scheduling algorithm for
reconfigurable co-synthesis system architecture using
reconfigurable devices. Section 4 discusses experimental
results and finally we conclude in section 5.

2. RELATED WORKS

Memory

CPU1 CPU2

ASIC2ASIC1

Memory

CPU

Reconfigurable
Device1

Reconfigurable
Device ...ASIC ...

CPU ...

Figure 1 Conventional Architecture (Co-synthesis by ASICosyn) and
Reconfigurable Architecture (Co-synthesis by Proposed Algorithm).

Design teams today must choose to implement logic either
in application-specific hardware or reconfigurable device.
Each of these offerings has distinct advantages:
performance and density for application-specific hardware,
vs. Turn-Around-Time and flexibility for reconfigurable
devices [2]. If we use reconfigurable device instead of
application-specific hardware to satisfy system constraints
and to achieve a minimized cost of the system, we can get
these advantages additionally.
Systems implemented with reconfigurable devices can

make use of their reprogrammability in two ways:
Compile-Time Reconfiguration (CTR) or Run-Time
Reconfiguration (RTR) [5]. We will use a RTR method to
reconfigure reconfigurable devices because we can execute
many tasks on a few reconfigurable devices instead of
multiple application-specific hardwares.
ASICosyn is a co-synthesis tool for embedded computing

systems. The algorithm synthesizes a distributed
multiprocessor architecture as shown in Figure 1 and
allocates processes to the CPUs and ASICs in such a
manner that the allocation and scheduling meet the system
constraints, while the cost of the system is minimized. [3].
The tool heuristically finds an optimal solution considering
conventional architecture only as shown in the Figure 1.
We use a task graph model [1] to describe each

application. Application is partitioned into task graph,
which is a directed acyclic graph [3]. In a task graph, nodes
represent tasks that may have been moderated to

2

Figure 2. Outline of Scheduling Algorithm.

large granularity; the directed edges represent data
dependencies between tasks [4]. Data dependencies means
that task placed in a child node can not run before a task
placed in a parent node does. Each task in a task graph has
information of execution time on CPU or on reconfigurable
device, execution time deadline, and data dependencies
between tasks.

3. SCHEDULING ALGORITHM

We propose a new scheduling algorithm for

reconfigurable co-synthesis system architecture as shown
in Figure 2.
Our algorithm’s primary objective is to meet the rate

constraint and the secondary objective is to minimize total
implementation cost using reprogrammablility of
reconfigurable device. The total implementation cost of the
system is obtained as

∑ ∑
∈ ∈

+
CPUsi DevicesHardwarej

ji DevicesHardwareCostCPUCost)()(

The outline of the algorithm consists of the following

steps.
 1. Read initial specification of a system and find an initial
solution assuming that we have infinite number of
reconfigurable devices.
 2. Iteratively reduce reconfigurable device numbers by
moving tasks to CPU.
 3. Further reduce the number of reconfigurable devices by
moving tasks assigned to reconfigurable devices from low
utilized reconfigurable device to other devices considering
run-time-reconfiguration and data dependencies

In step 1, read initial specification of a system from data
file, which is based on Monet [6] architectural exploration

Table 1. Experiment Example.

ASIC/
Task
Name

Fast
Speed

Fast
Area
(Cost)

Slow
Speed

Slow
Area
(Cost)

A1 3 30 5 20
B1 3 30 4 20
CPU/
Task
Name

Speed Reconfigurable
Device/
Task Name

Speed Cost

A1 9 A1 7 30
B1 15 B1 9 30

system and initial solution is constructed by assigning each
task in the task graphs to many reconfigurable devices.
In step 2, we try to find candidate tasks which have small

difference between execution time on CPU and
reconfigurable device including reconfigurable time. We
sort tasks according to ascending order of difference and
then assign a task to CPU from reconfigurable device. It
implies that implementing the task on reconfigurable
device can not achieve much speed-up, as compared to
implementing the task on CPU. This procedure iteratively
continues when all the possible tasks move to the CPU
while satisfying execution time deadline.
In step 3, we reschedule tasks which are assigned to

reconfigurable devices. We use a RTR; If one task is being
executed on a reconfigurable device, we can execute other
tasks on other reconfigurable devices. With the task
completed, reconfigurable device is ready to reconfigure
other tasks. Before the end of execution of the task placed
in parent node, the tasks placed on a child node can
reconfigure themselves on reconfigurable devices and start
to run after the task on parent node.
A iteration of the reconfigurable device number reduction

procedure tries to reduce the number of the reconfigurable
devices by eliminating lightly loaded reconfigurable device
after moving the tasks on those reconfigurable devices to
other reconfigurable devices.
By the proposed algorithm, the tasks on reconfigurable

device of low utilization are moved to other possible
reconfigurable devices, according to RTR and data
dependencies. Thereby, the system cost will be decreased.

4. EXPERIMENT RESULTS

Before carrying out any experiment, we considered impact

factors such as cost, execution time and reconfiguration
time of tasks that have been assigned to reconfigurable
devices.
We calculate our reconfigurable device’s performance

based on the ASIC performance. In real design, we might

3

either choose a high speed implementation with higher cost
(larger area), or choose a low speed implementation with
lower cost (smaller area) [1].

0

50

100

150

200

250

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1

0
.1
1

0
.1
2

0
.1
3

0
.1
4

0
.1
5

0
.1
6

0
.1
7

0
.1
8

0
.1
9

0
.2

0
.2
1

0
.2
2

Reconfigurable Constant

T
o
ta
l I
m
p
le
m
en
ta
tio
n
 C
o

Proposed Algorithm ASICosyn

Figure 2. ‘EX1’ Example.

0

20

40

60

80

100

120

140

160

180

200

ASICsoyn Proposed Algorithm

CPUs cost Hardware Units Cost

Figure 3. ‘EX2’ Example.

We assume that the cost of reconfigurable device is the
same as that of high speed ASIC and the execution time of
our reconfigurable device takes an average of CPU
execution time and the low speed ASIC execution time as
shown in Table 1. In general, reconfigurable device runs
faster than CPU but slower than ASIC [2].
The reconfiguration time can be calculated by an equation

given by

Reconfiguration Time = area x Δ

where
 Δ = reconfigurable constant

(time unit/area unit)

During the experiments, we changed the reconfigurable
constant while satisfying execution time deadline of the
system. Figure 2, 3, 4 show the statistics obtained from
three different experiments. The data indicated by ‘EX1,’
‘EX2,’ and ‘EX3’ were obtained by Monet tool of Mentor
Graphics. The maximum total implementation cost of the

system is smaller than that of the ASICosyn except ‘EX3’
case, even if it includes the reconfiguration time of the
reconfigurable device.

180

190

200

210

220

230

240

250

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
Reconfigurable Constant

T
o
ta
l C

o
st

Proposed Algorithm ASICosyn

Figure 4. ‘EX3’ Example.

In case of ‘EX1’ case, ASICosyn synthesized two CPUs
and single ASIC whereas our algorithm synthesized single
CPU and two reconfigurable devices. Our algorithm used
more hardware units but they executed many tasks taking
advantage of run-time reconfiguration. Thus, our
algorithm’s total implementation cost is smaller than
ASICosyn’s one as shown in Figure 2.
 In case of ‘EX2’ case, the total implementation cost was

fixed. ASICosyn synthesized single CPU and two ASICs
whereas our algorithm synthesized single CPU and single
reconfigurable device. These results are similar but our
algorithm found other critical path using single
reconfigurable device instead of two ASICs. Thus, our
algorithm’s total implementation cost is smaller than
ASICosyn’s one as seen in Figure 3.
In case of ‘EX3’ case, it didn’t have enough empty time

slots between task’s executions until reconfigurable
constant was smaller than ‘0.09’. Because of this, our
algorithm’s total implementation cost was same as
ASICosyn’s one. However the reconfiguration time of
reconfigurable devices became more longer, the algorithm
used the reconfiguration time to reconfigure reconfigurable
devices. Thus, after ‘0.09’ mark, the total implementation
cost of the system synthesized by the proposed method is
smaller than that of ASICosyn-based one as shown in
Figure 4.

5. CONCLUSIONS

In this paper we described a new scheduling algorithm for

reconfigurable co-synthesis architecture. The algorithm
synthesizes a system consisting of CPU, memory, bus and
many reconfigurable devices. We use a run-time
reconfiguration method to reconfigure reconfigurable
devices, since we can execute many tasks on a fewer
number of reconfigurable devices instead of multiple
application-specific hardwares. The scheduling algorithm

4

increases the utilization increase of reconfigurable devices
as much as possible.
Our experimental results demonstrate that the total cost of

the system can be made smaller than that of the
conventional architecture even if it includes the
reconfiguration time of the reconfigurable device.

Acknowledgments

This work has been supported in part by Chosun University
research funds, 2003, in part by the Center for Distributed
Sensor Network (CDSN) at GIST, in part by IC Design
Education Center (IDEC), and in part by the GIST
Technology Initiative (GTI).

REFERENCES

[1] Wayne Wolf and Jorgen, Staunstrup “Hardware/Software

co-design: Principles and Practice”. Kluwer Academic
Publishers. 1997.

[2] Paul S. Zuchowski, Christopher B. Reynolds, Richard J.

Grupp, Shelly G. Davis, Brendan Cremen, Bill Troxel “A
Hybird ASIC and FPGA Architecture”. Computer Aided
Design, 2002. ICCAD 2002. IEEE/ACM International
Conference on 10-14 Nov. 2002 Page(s):187 – 194, 2002.

[3] Yuan Xie and Wayne Wolf, “Co-synthesis with custom

ASICs”. Proc. Of ASP_DAC 2000, pp. 129-135, 2000.

[4] Yuan Xie and Wayne Wolf, “ASICosyn: co-synthesis of

conditional task graphs with custom ASICs” Proc. Of ASIC
2001, pp. 130-135, 2001.

[5] B.L. Hutchings and M. J. Wirthlin, “Implementation

approaches for reconfigurable logic applications” in Field-
Programmable Logic and Applications (FPL’1995) (W.
Moore and W. Luk, eds.), (Oxford, England), pp. 419-428,
Springer-Verlag, Berlin, Aug. 1995.

[6] Mentor Graphics Company, “Monet reference manual”.

