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ABSTRACT 

 

This paper introduces the Pareto front as a useful analysis tool 

to explore the design space of MOS Current Mode Logic 

(MCML) circuits. A genetic algorithm (GA) is employed to 

automatically detect this front in a process that efficiently finds 

optimal parameterizations and their corresponding values in an 

aggregate fitness space. 

As an example of the flexibility of this design automation 

approach, the results for an optimized fundamental inverter logic 

gate are presented. Measures of the power consumption, 

propagation delay and output voltage swing are used as fitness 

functions, since the problem is treated as a multi-objective 

optimization task. 

 
Index Terms— Genetic algorithms, MOS current mode logic, 

Multi-objective optimization, Pareto front. 

 

1. INTRODUCTION 

 

HIS document introduces a novel automated 

optimization strategy that is applied for designing 

MOS Current Mode Logic (MCML) circuits, taking 

advantage of the power and versatility of Genetic 

Algorithms (GAs). Other approaches such as [1] have been 

published, which tie the optimization problem to the 

topology of the circuit and to its parameters, making 

necessary a relatively exhaustive search of the parameter 

space. Genetic Algorithms, on the other hand, work at a 

higher abstraction level in which specific information about 

the circuit being optimized is not required, it only receives 

a set of fitness values (e.g. real numbers), representing 

circuit metrics such as delay, power consumption, area, etc. 

Other metrics or types of digital or analog circuits can also 

be defined by the user. 

The proposed optimizer uses the genetic algorithm 

named PESA (Pareto Envelope-based Selection Algorithm) 

[2], and relies on a standard circuit simulator (e.g. Spectre, 

Spice and alike) to deal with the complexity of physical 

MOS transistor parameters and circuit topology.  Circuit 

parameters like supply voltage, width, length of transistors, 

etc., are generated by the genetic algorithm and passed to 

the simulator, where the computation of the fitness values 

takes place. Thus, the designer can change either the 

optimization algorithm or the simulation models without 

much effort.  

 

This paper begins with an overview of MCML circuits 

and the multiple parameters that affect their behavior. 

Section 3 gives an introduction to the basic concepts 

regarding the Pareto front, the architecture of our optimizer 

and how we employ it for circuit parameter search and 

optimization. Section 4 presents the experimental results 

obtained. The conclusions will be summarized in Section 5.  

 

2.  MCML CIRCUITS OVERVIEW 

 

MCML is a circuit technique that has been used in 

applications of high-speed, mixed signal environments due 

to its reduced switching noise, immunity to common-mode 

noise and, especially, because its power consumption does 

not increase with the frequency of operation [3], whereas in 

standard CMOS circuits, power consumption increases 

linearly with frequency.  

The fundamental MCML inverter/buffer is shown in Fig. 

1.  MCML circuits have three main components: PMOS 

transistor loads, one or more differential pairs depending 

on the number of logic inputs and a constant current 

source, controlled by the voltage Vbias. All logic inputs and 

outputs are fully differential. The circuit operation is based 

on current steering, i.e. the tail current produced by the 

transistor Mbias is steered into one of the branches 

depending on the differential inputs. This current develops 

a resistive voltage drop at the active load of the conducting 

T 



branch, while in the non conducting branch the output 

voltage is pulled to Vdd, thus producing complementary 

outputs.  

 

For a single logic gate, its Delay and Power are given by 

[4]: 

 

( / )MCMLD C V I= ∆                                             (1) 

   MCML ddP I V= ×                                            (2) 

where C is the load capacitance, I is the tail current and ∆V 

is the output voltage swing.  Equation (1) indicates that the 

propagation delay can be reduced by lowering the voltage 

swing, decreasing the load capacitance or increasing the 

tail current. However, from (2) it is seen that increasing the 

tail current directly impacts the power consumption. 

 
Fig. 1.  MCML inverter/buffer. Transistors at the 

differential pair and at the active loads have identical 

dimensions. Therefore their naming as “MA” and “MLoad”, 

respectively. 

 
If the circuit shown in Fig. 1 is operating in the mid 

swing point of its voltage transfer curve, the currents in the 

two branches are equal to I/2, both transistors in the 

differential pair are in saturation and their currents can be 

expressed as [1]: 
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where Ud is the mobility degradation coefficient, Ec the 

critical electric field for velocity saturation, µ0 the 

permeability of vacuum, Cox the oxide capacitance per unit 

gate area, Vt the threshold voltage and (W/L)A, VGSA are 

the width, length and gate-source voltage for transistor   

MA , respectively. 

 

MCML design is a complex task as its objective metrics 

are interdependent, and numerous circuit parameters have 

an effect on these metrics. In the example shown in Fig. 1, 

nine circuit parameters can be varied by the designer, 

namely: (W/L) for Mbias, Ma and MLoad plus Vdd, Vctrl and 

Vbias.  

 

Fig. 2 shows an example of a 2-level MCML circuit. It 

has been shown in [6] and [13] how optimizing 2-level 

gates becomes even more complex, as more parameters 

come into play, making its design by hand calculations a 

task of little practical use. Therefore it is apparent the need 

for an optimization strategy that is automated and 

independent of circuit topology.  

 
Fig.2. An example of a 2-level MCML gate, 

implementing both Nand/And logic functions. 

 

3. GENETIC ALGORITHM FOR MULTI-OBJECTIVE 

CIRCUIT OPTIMIZATION 

 

Genetic algorithms have previously been used in circuit 

optimization [7]. In that research, however, the 

optimization carried out was not multi-objective as only a 

single measure of fitness was considered, obtained by a 

linear combination of three circuit performance metrics. In 

our approach, multiple fitness values are independently 

computed and fed to the genetic algorithm for their 

evaluation. Multi-objective optimization both using a 

deterministic method [10] and a genetic  algorithm [9], 

[11], [14] have been proposed for analog circuit design 

and, although very similar in practice, our solution 



stemmed independently from the optimization of digital 

circuits. 

Recent efforts to develop optimization strategies for 

MCML circuits have already been published [1], [4], [5], 

[13], although these approaches are based on deterministic 

algorithms (gradient followers) which are prone to be 

trapped in local minima. 

 

3.1 Evaluating circuits using the Pareto Front 

 

The aggregate fitness function F for a circuit A with the 

parameterization u, evaluated using a reference data G is 

defined as 

( ) ( ) ( ) ( )( )u 1 u 2 u n uF A f A ,f A ,..., f A= Φ  (4) 

with the individual fitness functions ( )i uf A defined to 

increase monotonically with the fitness of some particular 

aspect of the circuit’s behavior. For example in our MCML 

inverter, fitness values will be directly related to its output 

voltage swing and inversely related with its power 

consumption or its propagation delay.  

The functions if  span a multidimensional fitness space, 

where each point represents the performance of a circuit 

parameterized with one point u in a parameter space. The 

general form of Φ  is assumed unknown, but it has to 

increase monotonically with increasing values of all fitness 

functions if . This condition ensures that a point in the 

fitness space can be considered fitter than all other points 

with smaller values in all dimensions. In Fig. 3, for 

example, the point q1 is fitter than the point q4 and all other 

elements within the gray rectangle. In this context, the 

point q1 is said to dominate q4. All non-dominated points in 

a set define the Pareto front of that set. In the example of 

Fig. 3 this front is defined by the points q1, q2 and q3. 

Choosing a parameterization that is not in the Pareto front 

is always a bad choice, since there is another point on the 

front with a better aggregate fitness. 

 
Fig.3.  Pareto Front. The point q1 dominates the region 

highlighted with a gray rectangle. Dashed lines delimit the 

dominated regions of the points q2, q3 and q4. The thick 

solid line segments represent the Pareto front for the four 

points. 

 

The previous concepts can be expressed mathematically 

using the following equation:  
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where �P is the Pareto front, f is the vector of fitness 

functions [f1, . . . , fn]
T
 and AP is the parameter space of 

circuit A. The partial ordering relation " "� on 

f describes the domination property and is defined as: 
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Any algorithm that finds the Pareto front for a set of 

fitness points implements (5) and (6). Since the parameter 

space AP  usually contains an infinite number of 

parameterizations, the next problem consists in choosing a 

representative set of samples from AP , such that their 

Pareto front can be assumed to be a reliable approximation 

of the exact front extracted for the complete space. 

A naive approach would be to regularly sample the 

values of each parameter, since the number of necessary 

evaluations would increase exponentially with the number 

of parameters. For example, a circuit with seven 

parameters (design variables), each sampled five times, 

would require 5
7
 = 78125 evaluations.  

To avoid this brute-force parameter search, here the 

multi-objective evolutionary algorithm PESA is employed. 

This genetic approach suppresses the computation of 

useless parameterizations and concentrates the analysis on 

those regions of the parameter space that provide 

promising results. Even if this algorithm also discretizes 

the parameter space, the resolution used for each parameter 

can be as high as necessary, without the menace of an 

exponential explosion of the search space. 

The number of evaluations required is then proportional 

to the number of bits used to represent a parameterization.  

3.2 CAD tool architecture 

The aim of our tool is to generate the Pareto front of a 

given cell, i.e. the set of all non-dominated 

parameterizations, since they represent the best individuals 

we are looking for. This information can be used later on to 

find the desired operating point of a circuit (choosing a 

specific individual), depending on the amount of resources 

available for the designer. A block diagram of the tool is 

shown in Fig. 4. 

The functionality of the tool is divided into two well-



defined and independent processes: a circuit representation 

phase and an optimization phase. 

 

Fig.4.  Genetic Circuit Optimizer Architecture. From the 

optimization point of view, both fitness values and 

parameters are just numbers, whereas for the circuit 

representation these numbers mean physical and 

geometrical variables. 

 

In the current version of our tool, the circuit 

representation is captured with a Spice-like netlist and fed 

to the Spectre™ circuit simulator, where the computation 

of the specified performance metrics takes place. On the 

other hand, the core of the optimization process is based on 

the LTI-LIB [8], an open source library originally intended 

for image processing research [12], which provides the 

implementation of the PESA algorithm and the generation 

of the Pareto front.  In Fig.4, the thick dotted line illustrates 

this separation of tasks.  Furthermore, the optimization and 

representation processes are communicated through 

TCP/IP sockets, which allows for each process to reside on 

different machines or operating systems. 

 

4. RESULTS AND DISCUSSION 

 

Figure 5. shows a Pareto front, in three dimensions, of a 

MCML inverter/buffer as the one presented in Fig,1. This 

particular front contains 2500 individuals 

(parameterizations) and was generated by the PESA 

genetic algorithm. This figure shows the design constraints 

that have to be made for fast circuits: reducing delay will 

increase power and reduce the voltage swing. 

 

Figure 6 shows the projection onto the “Voltage Swing, 

Power” plane of the three dimensional front.  These fronts 

are a graphical aid to the designer to quickly see the 

tradeoffs between design metrics or fitness functions, in  

 

 

Fig. 5.  Pareto front of a MCML inverter/buffer. Three 

design metrics were defined for this example: voltage 

swing, average power consumption and propagation delay, 

although others can also be defined. 

 

GA´s terminology. For example, it is seen in Fig. 6 that the 

maximum voltage swing attainable by the circuit is 

approximately 2.7 Volts, at the expense of a higher power 

consumption. 

A key question is: what values should the variables of a 

given cell have in order to satisfy some performance 

criteria? In MCML circuits design there is no obvious 

answer as, due to the amount of variables, many degrees of 

freedom exist, as it has already been explained in Section 

II.  Fortunately, Electronic Design Automation (EDA) 

tools can help in searching for an answer.   

Table I presents a selected set of five parameterizations 

for our MCML inverter, organized by decreasing values of 

the supply voltage. In other words, for this example we 

were interested in finding individuals for decreasing values 

of the supply voltage, regardless of power or delay. Since 

the supply voltage was not defined as a fitness measure, 

this information cannot be visualized from the graphical 

fronts, but instead it is obtained from the table of the whole 

Pareto set, which is generated by our tool. Table II shows 

the fitness values for the corresponding individuals. It is 

clear from the numbers presented in this table that these are 

non-dominated points, i.e. each individual is better than the 

others in at least one performance metric (fitness) and 

therefore, represent optimized parameter sets.   

Using the information extracted from the Pareto front, 
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for example, individual numbered as 3 in the tables, is a 

circuit parameterization that operates at a supply voltage of 

1.2V and has a power consumption of  3.95 µW. It is also 

seen from the tables that individual number 4 works at a 

low voltage and very close to the sub-threshold region 

(Vbias=0.52V). Consequently, a design constrained to 

operate at low voltages would take advantage of 

parameterization number four. Again, the Pareto front does 

not show a single winner, is the designer who must pick up 

from the front the individual that suits best his/her needs. 

 

Fig.6. Projection of the Pareto front over the “Voltage 

Swing, Power Consumption” plane. 

 

 

TABLE I 

INDIVIDUALS CHOSEN FROM THE PARETO 

FRONT 

Individual 1 2 3 4  5 

Vdd [V] 3.3 2.5 1.2 0.64 0.3       

Vbias [V] 0.3 1.0 0.7 0.52 1.3 

Vcntrl [V] 0.6 0.8 0.8 0.72 0.23 

Wbias [µm] 6.0 4.12 4.12 5.83 2.92 

Lbias [µm] 1.37 0.43 2.1 1.77 0.50 

Wa [µm] 5.32 4.46 2.24 4.12 5.83 

La [µm] 1.30 0.51 0.83 1.93 1.06 

Wload [µm] 4.63 1.73 1.9 1.55      0.7 

Lload [µm]  1.22 1.61 1.85 0.75 0.35 

 

 

 

 

 

TABLE II 

FITNESS VALUES FOR EACH INDIVIDUAL 

Individ.  ln(1/Power[W]) Volt.Swing[V] 1/Delay[s] 

1  17.66  0.43 55300 

2  8.96  2.0 625272 

3  12.44  0.8 2160270 

    4  19.04  0.37 45546 

5  29.13  0.11 524 

 

 

5. CONCLUSION 

This work presented an automated design strategy for 

MCML circuits, intended to help designers find optimized 

parameterizations.  In this paper, the optimization problem 

has been treated as multi-objective and as such, the Pareto 

front has been used as an instrument to find these 

optimized points. Initially, our EDA tool has been applied 

to MCML circuits, however, due to its flexibility and 

independence of circuit topology, it has also been tested 

with other types of digital circuits and to characterize an 

Operational Amplifier.  

    We expect to combine both simulation results and 

analytic expressions as a future refinement of this 

optimization methodology. 
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