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ABSTRACT 
This paper presents synthesis results on a method to 
minimize the amount of hardware needed to implement a 
parallel digital finite impulse response (FIR) filters for 
hardwired (fixed coefficients) implementation targeted 
for high performance. The proposed method employ a 
combination of two approaches: first, the reduction of the 
coefficients to N-Power-of-Two (NPT) terms, where the 
maximum number of non-zero in each coefficient is 
taken as a constraint, followed by Common 
Subexpression Elimination (CSE) among multipliers. We 
present results for a range of different filter 
specifications, using Quartus II FPGA synthesis tool. We 
concluded that for FPGA applications, the NPT is a good 
approach, while CSE is worthless. 

1. INTRODUCTION 
Finite Impulse Response (FIR) filters are of great 

importance in the digital signal processing (DSP) world. 
Their characteristics of linear phase and feed forward 
implementation make it very useful for building high 
performance filters.  

There are two main aspects to be considered when 
designing a hardwired parallel filter, namely the number 
of bits required for the signal and the required transfer 
function of the filter. The former one determines the word 
length of the entire datapath. The later one is determined 
by two parameters, namely the number of taps, and the 
number of bits in each coefficient. The most expensive 
block in terms of area, delay, and power in a FIR filter is 
the multipliers needed to implement it. In this paper we 
are addressing optimizations in the filter by a 
combination of two known approaches. First, we make 
use of power-of-two terms with scaling, and select the best 
coefficient set taking into account the transfer function 
characteristics of the filter. This approach explores the 
reduction in complexity of the multiplier block by 
reducing each coefficient to a limited amount of power-of-
two terms (nonzero bits). Also, it is found by exhaustive 
search a scale factor to be multiplied by all coefficients 
prior to its conversion to fixed point in order to improve 

the transfer function generated by the N-power-of-two 
(NPT) coefficients.  Second, using the transposed form of 
the filter and considering all the multipliers as adder trees 
(constant coefficient multiplierless implementation), we 
make common subexpression elimination (CSE) by 
pairwise matching, generating a minimized adder tree of 
the whole multiplier block.  

The goal of this work is verify the performance of these 
two algorithms when targeting a FPGA implementation 
in reducing the overall filter complexity. This is an 
extension of the work presented in [11], where only 
coefficient optimizations were addressed. 

We present a brief review of FIR filter design in section 
2 and related work on power-of-two coefficients and 
common subexpression elimination in section 3. In 
section 4 we present the employed algorithm, and in 
section 5 its implementation. Section 6 shows the results 
obtained and section 7 summarizes the conclusions and 
presents our proposals for future work. 

2. PARALLEL FIR FILTER OVERVIEW 
A FIR filter can be mathematically expressed by the 

equation (1) [10]: ∑−
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where X represents the input signal, H the filter 
coefficients, Y the output signal, Y[n] is the current output 
sample, and N is the number of coefficients (or taps) of 
the filter. This is a convolution operation of the filter 
coefficients along the signal. The coefficients of the FIR 
filter are obtained using the Discrete Fourier Transform 
(DFT) of the required frequency transfer function with 
some known windowing method. In the sequential 
implementation a set of multiply-and-accumulate (MAC) 
operations is performed for each sample of the input data 
signal, multiplying the N delayed input samples by 
coefficients and summing up the results together to 
generate the output signal. In parallel implementations, 
we can have two main architectures. The first one consists 



of unrolling of MAC loop where we have several delayed 
versions of the input signal entering in a fully parallel 
multiplier block, followed by a summation block. The 
other one consists of a multiplier block, which takes the 
same input signal and delivers each output to an input of 
a delayed summation block. The former (Fig. 1a) is the 
direct form parallel FIR and the last (Fig. 1b) is the 
transposed form of the FIR. 
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 Figure 1. Parallel FIR filters in (a) direct form 
or (b) transposed direct form. 

Both the direct form and transposed architectures of 
the FIR filter have the same complexity [10], but for some 
multiplier block optimization algorithms, the transposed 
form is preferred [1,2,3]. 

3. RELATED WORK 
Several techniques for optimizing the multiplier block 

of parallel FIR filters were proposed in the literature. All 
of them consider the use the fixed-point representation 
and most [1-3] consider the transposed form 
implementation, because it is easier to obtain common sub 
expressions to be shared along two or more multipliers in 
this form. Many consider the use of some kind of signed 
digit (SD) representation, mainly the canonical signed 
digit (CSD) representation [2,3], which results in fewer 
non-zero digits in each coefficient, usually resulting in a 
smaller multiplier block. Previous research has been 
shown reductions of more than 50% [3] in the number of 
adders by using these techniques. The great advantage of 
these techniques is that the optimized filter has the same 
behavior of the original non-optimized one (i.e. same 
impulse response or transfer function). Other optimization 
techniques consist of the modification of the coefficients 
in order to generate sets of coefficients, which have a 
lower implementation, cost. Scaling and coefficient 
perturbations are examples of those techniques. Another 
approach consists of representing each coefficient as a 
sum of power-of-two terms and limiting the number of 
power-of-two terms in each coefficient [4,5,7,8]. That 
means the reduction of the number of bits in ‘1’ state in 
each coefficient, reducing the number of adders needed to 
implement the multiplier for that coefficient. The best 
case is when we have just one power-of-two term in each 
coefficient, eliminating additions in the multiplier block 
at all, requiring operand shifting only (we are considering 
a hardwired implementation, where the shifting operation 
have no cost). We name this NPT (N-Power-of-Two), 
where N is the number of power-of-two terms. This 

approach has the advantage of preserving the full 
dynamic range of the coefficients and limiting the number 
of adders necessary to make the multiplication operation 
(leading to low power and high speed). The disadvantage 
of this approach is that the transfer function of the filter is 
not the same as obtained with the original fixed-point 
representation. In [4] an extensive review of the power-of-
two technique is presented. In this work we use both these 
approaches separately and combined, showing the gain 
obtained against the unoptimized version, comparing the 
adder savings with the FPGA synthesized logic elements 
(LE), delay and power. The key point is to verify if the 
savings found in the effort to reduce the number of adders 
is mapped to a reduction in the FPGA parameters. 

4. ALGORITHM DESCRIPTION 
The algorithm to select the best NPT coefficient set 

based on scaling of the coefficients before the conversion 
to fixed point format followed by common subexpression 
elimination (CSE) is described below. 

The algorithm will search a wide range of discrete 
scaling factors and store the resulting transfer function of 
each NPT coefficient set associated and later select the 
best coefficient set based on the characteristics of the 
transfer function. We have adopted a slightly different 
criteria from other published literature for selecting the 
best coefficient set [4,5,7,8]. We use the in-band ripple as 
a constraint, selecting only the transfer functions for 
which the entire pass band are within the specified ripple, 
and select the coefficient set in which the minimum 
attenuation in the stop band is the maximum among all 
the resulting transfer functions. The algorithm 1 shows 
the NPT coefficient selection process. 

Algorithm 1: NPT coefficient selection by transfer 
function analysis 

Step 1: Obtain FIR filter parameters: Taps; Bits; NPT 
elements; transfer function; pass and stop bands region; 
in-band ripple; Scale factors region and increment. 

Step 2:  Obtain the floating-point coefficients for the 
specified transfer function. 

Step 3: For each element in scale factor vector, generate a 
new set of coefficients by multiplying each coefficient in 
floating point the current scale factor; make the 
coefficients positive and save the signal in of each 
coefficient in a set of signs for later use; get the fixed 
point representation of this set of coefficients; convert the 
fixed point coefficients to NPT; obtain a transfer function 
of the filter with these NPT coefficients. Add the set of 
coefficients and transfer function to a set of filters. 



Step 4:  From the set of filters, eliminate those that do not 
respect the in-band ripple constraint. 

Step 5:  From the results of Step 4, find out the coefficient 
set that generates a filter with the highest minimum 
attenuation in the stop band and select this set as the 
solution of the NPT phase. 

Step 6: Make the common subexpression elimination of 
the solution of the NPT phase. 

This algorithm identifies the scaling factor that 
generates the best NPT coefficients. The Step 6 will get 
the coefficient set selected in Step 5 and make the 
common sub expression elimination task. The output is a 
graph of the multiplier block that can easily be used to 
generate a hardware description of the filter. The 
algorithm 2 presents the process of eliminating common 
subexpressions.  

Algorithm 2: Common Sub Expression Elimination 

Step 1:  Create a matrix CNxW filled with the coefficients, 
where W is the Width of the coefficient and N is the 
number of coefficients; create a matrix F2xW with all 
values equal -1. 

Step 2: Create a set of triples X(a,b,c), referencing the 
two columns of the matrix C and the number of bits in 
state ‘1’ in both bit positions of these two columns. 

Step 3: Sort X by descending order of the element c 

Step 4: Get the first element of the set X. If c<1 in this 
element, go to step 6 

Step 5: Create a new row in matrix C with the bits that 
are common in both columns of the element selected in 
Step 4; create a new row in matrix F, making the two 
values referencing the number of the columns that formed 
this one; go to step 2 

Step 6: Sweep the matrix F backwards from the last index 
down to the index W, generating a tree of adders. Bits in 
‘1’ in the matrix C are used to mark interconnections 
from the multiplier block to the summation block.  

This algorithm is a variation of the algorithm proposed 
in [1] for binary coefficients in the sense it treats only 
positive numbers, leaving the signs to control the final 
summation block in the architecture. 

5. METHODOLOGY 
The algorithm for NPT coefficient selection by transfer 

function analysis (Algorithm 1 described in the Section 3) 
was implemented in Matlab and its DSP and visualization 
toolboxes. It takes a set of parameters from a 
configuration file, process the algorithm, show the search 

space and the selected solution graphically, and write a 
file with the selected filter coefficients.  

Since the filter coefficients can be positive or negative, 
and we deal only with positive numbers, our method saves 
signs to be treated separately. This was helpful for the 
task of optimizing the multiplier block. Figure 2 shows 
the architecture developed for this implementation, where 
the signs S1..N of the coefficients C1..N were saved to be 
control signs in the final summation block (the signal 
actually selects between add or subtract functions). The 
algorithm for common subexpression elimination 
(Algorithm 2 described in the Section 3) was 
implemented in C. 
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Figure 2. Architecture of the hardware description 
output. 

This is a transposed direct form FIR filter where the 
multiplier block receives the input signal X, and delivers 
N (taps) multiplied outputs. A multiplier just before the 
output Y is needed if we need to maintain the unity gain 
in the pass band, since our method scaled all the 
coefficients to find a better representation in the NPT 
phase. This multiplier can be eliminated if the gain of the 
filter is not critical. 

6. RESULTS 
After implementing the algorithm described in the 

section 3, we analyzed the behavior of the NPT rounding 
technique for several filter specifications. Our 
experiments showed that it is very hard to get more than 
20dB per PT digit (a similar result was stated in [5] for 
CSD coefficients), and this is very dependent on the 
frequency response shape and on the number of taps. Fig. 
3 shows graphical results for the Low Pass (LP) filter LP1 
specified in Table 2. 

Dotted line in Fig. 3(a) and 3(b) shows the transfer 
function for the FIR filter LP1 in fixed point. Solid lines 
in Fig. 3(a) show the transfer functions for the 2PT 
coefficient sets for all the 76 scale factors tested (0.5 to 2 
in steps of 0.02). Fig. 3(b) compares the filter transfer 
function for the LP1 with fixed point coefficients and the 
optimized version with 2PT coefficient set selected by our 
method.  The insert in Fig. 3(b) shows that the effect of 
the optimization is negligible in the in-band ripple. 



Table 1 shows a comparison between the original 
fixed-point coefficients and the reduced 2PT coefficients 
for LP1 FIR filter (using the same scale factor for both 
coefficient sets). As the coefficients are symmetrical, the 
table presents only the first N/2+1 coefficients of the 49-
tap filter. 

 The results presented in Table 1 show the capability of 
the NPT phase in reducing the multiplier block in terms 
of number of adders with small changes in the transfer 
function, with the methodology adopted. As stated in 
section 4, the sign of the coefficients are treated separately 
in the final summation block (not considered here), so all 
coefficients are positive. Note that the NPT technique not 
only reduces the total number of adders but also the logic 
depth in terms of number of adders needed to implement 
the multipliers, which produces a delay reduction.  

Table 1. Comparison of the coefficients  
before and after the NPT phase. 

The last phase of the algorithm is the common 
subexpression elimination. Table 2 presents the 
specifications some low pass (LP) and high pass (HP) 
filters used to test our methodology. The parameters have 
been selected to cover the 1PT to 4PT-reduced coefficients 
and 10 to 16 bits fixed point. Table 4 summarizes the 
results for the filter specifications presented in Table 2, 
showing the number of adders for each case. 
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Figure 3. (a) Fixed point (dotted) x 2PT for each scale 
factor tested (solid), and (b) fixed point (dotted) x 2PT 

selected (solid). Ripple in pass band (detail). 

Table 3 shows that significant reduction in the number 
of adders is achieved by applying either CSE or NPT 
optimization separately. Our proposed methodology, 
combining them appropriately, improves the results even 
more. The great advantage of using the NPT phase is that 
we greatly simplify the complexity of the multipliers by 
controllably modifying the coefficients, with small and 
acceptable changes in the filter transfer function. Also the 
logic depth is guaranteed to be low in the NPT 
optimization phase. Limiting the number of power-of-two 
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(PT) terms in each coefficient also reduces the summation 
tree needed to implement each multiplier [6] (as shown in 
Table 1 for LP1 filter), reducing the delay. This delay can 
be exchanged for lower power consumption through the 
reduction of the supply voltage. Additionally, a lower 
logic depth can lead to a reduction in the glitching 
activity, hence reducing the power further.  

The CSE phase improves the results by eliminating any 
redundancies (common subexpressions among 
multipliers) in the multiplier block, thus further reducing 
the number of adders. A grouped bar graph is showed in 
Figure 4. 

Another benchmark was made to verify the 
performance of the method for FPGA synthesis. Table 3 
summarizes the parameters for the filter and for the tool 
employed to synthesize the various VHDL descriptions of 
the filter to a target FPGA.  All the optimization phases in 
the synthesis tool were left unchanged. 

Table 2. Filters employed to evaluate the algorithms. 

Parameter LP1 LP2 LP3 HP1 HP2 

# of Taps 49 31 71 31 51 

Scale Range 
(increment) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

0.5-2 
(0.02) 

Bits Fixed Point 10 
(sign+9) 

16 
(sign+15) 

16 
(sign+15) 

12 
(sign+11) 

16 
(sign+15) 

NPT digits 2 4 3 1 4 

Pass Band 
(normalized) 

0-0.3 0-0.3 0-0.05 0.6-1 0.7-1 

Max. Pass Band 
Ripple 

0.1 0.01 0.1 0.1 0.01 

Stop Band 
(normalized) 

0.35-1 0.35-1 0.07-1 0-0.4 0-0.6 

Stop Gain (dB) -40 -60 -60 -20 -60 

Window Type Hamming Hamming Blackman Hamming Hamming 

 

Table 3. Parameters for the obtained synthesis results. 

Filter Form Transposed Direct Form 

Input 16 bits samples 

Output 32 bits samples 

Coefficients 16 bits 

FPGA EP20K200E 

Synthesis tool Quartus II 2.2 

Power estimation 500 random input vectors 

Sample-rate frequency 10MHz 

 

Table 4 shows the number of adders employed to 
generate the multiplier block in some filters for all the 
combinations of the two employed approaches. We can 
notice in this table significant reductions in the number of 
adders needed to implement the multiplier block are 
achieved with each of the algorithms individually. When 
combined together, the results improve further, as we 
expected. 

We present several design parameter results after 
FPGA synthesis, namely the number of logic elements 
(LE), the worst case delay, and the overall power 
consumption under random inputs. We can observe in 
Table 5 a significant reduction in the number of adders 
and the power consumption when we make the NPT 
coefficient reduction. In this table we can notice a few 
lines with the same value, indicating that the CSE phase 
does not lead to any improvement in the results (even 
generating worse results in some cases). The explanation 
of the seemingly poor performance of this optimization 
phase is that the tool we are using (Quartus II 2.2) finds 
out common subexpressions as redundant logic and 
eliminates it. 

Table 4. Optimization results for the filters in Table 2. 

Filter Mul.-less CSE NPT NPT+CSE 

 Add. % Add. % Add. % Add. % 

LP1(fig.3) 27 100 16 59 11 41 9 33 

LP2 59 100 31 53 38 64 25 42 

LP3 135 100 68 50 75 56 47 35 

HP1 16 100 14 88 0* 0 0* 0 

HP2 87 100 50 57 55 63 37 43 

Mean  100  61  44  31 

*Only one PT term to compute; shift-only operation. 
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Figure 4.  Combination of the two methods for the 
filters presented in Table 2. 

The power consumption reduction stems from three 
factors: first, the smaller number of adders, second the 
reduced (and controlled) logic depth from the NPT phase 
reduces glitching activity, and third shorter paths may 



allow for a supply voltage reduction if the same data rate 
is intended. 

7. CONCLUSION 
From the results obtained we conclude that using NPT 

coefficients representation leads to a great reduction in 
the complexity of the multiplier block of a FIR filter, with 
a small and controllable distortion in the transfer curve of 
the filter. This is done by means of selecting the 
appropriate fixed-point representation for the NPT 
conversion process by means of scaling the floating-point 
coefficients before its conversion to fixed point. The scale 
factor that generates the best results is found by 
exhaustive search along a discrete range of scale factors.  

Table 5. FPGA synthesis results. 

Filtro Optmization 
Method 

Adders #LE Delay Power 

None 27 3017 44 325 

CSE 16 3014 44 325 

NPT 11 2630 35 169 

LP1 

CSE+NPT 9 2630 35 169 

None 59 3428 66 1078 

CSE 31 3488 72 1224 

NPT 38 2798 55 530 

LP2 

CSE+NPT 25 2918 59 570 

None 135 8062 86 2990 

CSE 68 7756 76 2588 

NPT 75 5742 65 967 

LP3 

CSE+NPT 47 6282 59 1138 

None 16 1976 43 258 

CSE 14 2033 45 296 

NPT 0 1573 21 96 

HP1 

CSE+NPT 0 1573 21 96 

None 87 5572 72 1463 

CSE 50 5926 65 2118 

NPT 55 4649 56 765 

HP2 

CSE+NPT 37 4882 60 952 

The CSE optimization reduces the number of adders in 
the multiplier block by sharing subexpressions common 
among different multipliers. It can be combined with 
NPT, leading to a better reduction in the number of 
adders, as shown in the “Adders” column in Table 5. 
Although the CSE phase reduces the number of adders of 
the filter, the synthesized logic does not present any 

improvement when we use CSE, as shown in Table 5 
(#LE, Delay and Power columns). The reason for that is 
that we use the FPGA synthesis tool in the standard 
options, which includes an optimization phase. It 
eliminates unnecessary logic, including redundant logic 
(common subexpressions). The optimization makes the 
task of the CSE algorithm and is applied to all versions of 
the synthesized filters, including the non-optimized one, 
leading to similar synthesis results whether  CSE 
optimization is applied or not.   

The Delay results in Table 5 are estimated by the 
synthesis tool. The restriction in the number of non-zero 
digits in the coefficients reduced significantly the delay, 
as expected. 

Finally the Power results in Table 5 are estimated by 
the tool by simulating the extracted circuit stimulated by a 
random input signal. The reduction in the logic and the 
logic depth by the NPT optimization reduced the circuit 
subject to transiction and the glitching activity, leading to 
great reductions in power comsumption. 

We conclude that NPT reduces the FIR filter area, 
delay and power for FPGA applications, while CSE does 
not lead to any improvement, as explained above. 

Future work will investigate the use of Signed Digit 
representation and pipelined FIR optimization.  
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