
Design Optimization Techniques Evaluation for
High Performance Parallel FIR Filters in FPGA

Vagner S. Rosa

Inst. Informatics - Univ. Fed. Rio Grande do Sul

Porto Alegre, RS – Brazil

vsrosa@inf.ufrgs.br

Eduardo Costa

Universidade Católica de Pelotas

Pelotas, RS – Brazil

ecosta@ucpel.tche.br

Sergio Bampi

Inst. Informatics - Univ. Fed. Rio Grande do Sul

Porto Alegre, RS – Brazil

bampi@inf.ufrgs.br

ABSTRACT
This paper presents synthesis results on a method to
minimize the amount of hardware needed to implement a
parallel digital finite impulse response (FIR) filters for
hardwired (fixed coefficients) implementation targeted
for high performance. The proposed method employ a
combination of two approaches: first, the reduction of the
coefficients to N-Power-of-Two (NPT) terms, where the
maximum number of non-zero in each coefficient is
taken as a constraint, followed by Common
Subexpression Elimination (CSE) among multipliers. We
present results for a range of different filter
specifications, using Quartus II FPGA synthesis tool. We
concluded that for FPGA applications, the NPT is a good
approach, while CSE is worthless.

1. INTRODUCTION
Finite Impulse Response (FIR) filters are of great

importance in the digital signal processing (DSP) world.
Their characteristics of linear phase and feed forward
implementation make it very useful for building high
performance filters.

There are two main aspects to be considered when
designing a hardwired parallel filter, namely the number
of bits required for the signal and the required transfer
function of the filter. The former one determines the word
length of the entire datapath. The later one is determined
by two parameters, namely the number of taps, and the
number of bits in each coefficient. The most expensive
block in terms of area, delay, and power in a FIR filter is
the multipliers needed to implement it. In this paper we
are addressing optimizations in the filter by a
combination of two known approaches. First, we make
use of power-of-two terms with scaling, and select the best
coefficient set taking into account the transfer function
characteristics of the filter. This approach explores the
reduction in complexity of the multiplier block by
reducing each coefficient to a limited amount of power-of-
two terms (nonzero bits). Also, it is found by exhaustive
search a scale factor to be multiplied by all coefficients
prior to its conversion to fixed point in order to improve

the transfer function generated by the N-power-of-two
(NPT) coefficients. Second, using the transposed form of
the filter and considering all the multipliers as adder trees
(constant coefficient multiplierless implementation), we
make common subexpression elimination (CSE) by
pairwise matching, generating a minimized adder tree of
the whole multiplier block.

The goal of this work is verify the performance of these
two algorithms when targeting a FPGA implementation
in reducing the overall filter complexity. This is an
extension of the work presented in [11], where only
coefficient optimizations were addressed.

We present a brief review of FIR filter design in section
2 and related work on power-of-two coefficients and
common subexpression elimination in section 3. In
section 4 we present the employed algorithm, and in
section 5 its implementation. Section 6 shows the results
obtained and section 7 summarizes the conclusions and
presents our proposals for future work.

2. PARALLEL FIR FILTER OVERVIEW
A FIR filter can be mathematically expressed by the

equation (1) [10]: ∑−

=

−=
1

0

][][][
N

i

inXiHnY , (1)

where X represents the input signal, H the filter
coefficients, Y the output signal, Y[n] is the current output
sample, and N is the number of coefficients (or taps) of
the filter. This is a convolution operation of the filter
coefficients along the signal. The coefficients of the FIR
filter are obtained using the Discrete Fourier Transform
(DFT) of the required frequency transfer function with
some known windowing method. In the sequential
implementation a set of multiply-and-accumulate (MAC)
operations is performed for each sample of the input data
signal, multiplying the N delayed input samples by
coefficients and summing up the results together to
generate the output signal. In parallel implementations,
we can have two main architectures. The first one consists

of unrolling of MAC loop where we have several delayed
versions of the input signal entering in a fully parallel
multiplier block, followed by a summation block. The
other one consists of a multiplier block, which takes the
same input signal and delivers each output to an input of
a delayed summation block. The former (Fig. 1a) is the
direct form parallel FIR and the last (Fig. 1b) is the
transposed form of the FIR.

H0 H1 HN-2 HN-1 H2

X

Y

HN-1 HN-2 H1 H0 HN-2

X

Y

(a) (b)

 Figure 1. Parallel FIR filters in (a) direct form
or (b) transposed direct form.

Both the direct form and transposed architectures of
the FIR filter have the same complexity [10], but for some
multiplier block optimization algorithms, the transposed
form is preferred [1,2,3].

3. RELATED WORK
Several techniques for optimizing the multiplier block

of parallel FIR filters were proposed in the literature. All
of them consider the use the fixed-point representation
and most [1-3] consider the transposed form
implementation, because it is easier to obtain common sub
expressions to be shared along two or more multipliers in
this form. Many consider the use of some kind of signed
digit (SD) representation, mainly the canonical signed
digit (CSD) representation [2,3], which results in fewer
non-zero digits in each coefficient, usually resulting in a
smaller multiplier block. Previous research has been
shown reductions of more than 50% [3] in the number of
adders by using these techniques. The great advantage of
these techniques is that the optimized filter has the same
behavior of the original non-optimized one (i.e. same
impulse response or transfer function). Other optimization
techniques consist of the modification of the coefficients
in order to generate sets of coefficients, which have a
lower implementation, cost. Scaling and coefficient
perturbations are examples of those techniques. Another
approach consists of representing each coefficient as a
sum of power-of-two terms and limiting the number of
power-of-two terms in each coefficient [4,5,7,8]. That
means the reduction of the number of bits in ‘1’ state in
each coefficient, reducing the number of adders needed to
implement the multiplier for that coefficient. The best
case is when we have just one power-of-two term in each
coefficient, eliminating additions in the multiplier block
at all, requiring operand shifting only (we are considering
a hardwired implementation, where the shifting operation
have no cost). We name this NPT (N-Power-of-Two),
where N is the number of power-of-two terms. This

approach has the advantage of preserving the full
dynamic range of the coefficients and limiting the number
of adders necessary to make the multiplication operation
(leading to low power and high speed). The disadvantage
of this approach is that the transfer function of the filter is
not the same as obtained with the original fixed-point
representation. In [4] an extensive review of the power-of-
two technique is presented. In this work we use both these
approaches separately and combined, showing the gain
obtained against the unoptimized version, comparing the
adder savings with the FPGA synthesized logic elements
(LE), delay and power. The key point is to verify if the
savings found in the effort to reduce the number of adders
is mapped to a reduction in the FPGA parameters.

4. ALGORITHM DESCRIPTION
The algorithm to select the best NPT coefficient set

based on scaling of the coefficients before the conversion
to fixed point format followed by common subexpression
elimination (CSE) is described below.

The algorithm will search a wide range of discrete
scaling factors and store the resulting transfer function of
each NPT coefficient set associated and later select the
best coefficient set based on the characteristics of the
transfer function. We have adopted a slightly different
criteria from other published literature for selecting the
best coefficient set [4,5,7,8]. We use the in-band ripple as
a constraint, selecting only the transfer functions for
which the entire pass band are within the specified ripple,
and select the coefficient set in which the minimum
attenuation in the stop band is the maximum among all
the resulting transfer functions. The algorithm 1 shows
the NPT coefficient selection process.

Algorithm 1: NPT coefficient selection by transfer
function analysis

Step 1: Obtain FIR filter parameters: Taps; Bits; NPT
elements; transfer function; pass and stop bands region;
in-band ripple; Scale factors region and increment.

Step 2: Obtain the floating-point coefficients for the
specified transfer function.

Step 3: For each element in scale factor vector, generate a
new set of coefficients by multiplying each coefficient in
floating point the current scale factor; make the
coefficients positive and save the signal in of each
coefficient in a set of signs for later use; get the fixed
point representation of this set of coefficients; convert the
fixed point coefficients to NPT; obtain a transfer function
of the filter with these NPT coefficients. Add the set of
coefficients and transfer function to a set of filters.

Step 4: From the set of filters, eliminate those that do not
respect the in-band ripple constraint.

Step 5: From the results of Step 4, find out the coefficient
set that generates a filter with the highest minimum
attenuation in the stop band and select this set as the
solution of the NPT phase.

Step 6: Make the common subexpression elimination of
the solution of the NPT phase.

This algorithm identifies the scaling factor that
generates the best NPT coefficients. The Step 6 will get
the coefficient set selected in Step 5 and make the
common sub expression elimination task. The output is a
graph of the multiplier block that can easily be used to
generate a hardware description of the filter. The
algorithm 2 presents the process of eliminating common
subexpressions.

Algorithm 2: Common Sub Expression Elimination

Step 1: Create a matrix CNxW filled with the coefficients,
where W is the Width of the coefficient and N is the
number of coefficients; create a matrix F2xW with all
values equal -1.

Step 2: Create a set of triples X(a,b,c), referencing the
two columns of the matrix C and the number of bits in
state ‘1’ in both bit positions of these two columns.

Step 3: Sort X by descending order of the element c

Step 4: Get the first element of the set X. If c<1 in this
element, go to step 6

Step 5: Create a new row in matrix C with the bits that
are common in both columns of the element selected in
Step 4; create a new row in matrix F, making the two
values referencing the number of the columns that formed
this one; go to step 2

Step 6: Sweep the matrix F backwards from the last index
down to the index W, generating a tree of adders. Bits in
‘1’ in the matrix C are used to mark interconnections
from the multiplier block to the summation block.

This algorithm is a variation of the algorithm proposed
in [1] for binary coefficients in the sense it treats only
positive numbers, leaving the signs to control the final
summation block in the architecture.

5. METHODOLOGY
The algorithm for NPT coefficient selection by transfer

function analysis (Algorithm 1 described in the Section 3)
was implemented in Matlab and its DSP and visualization
toolboxes. It takes a set of parameters from a
configuration file, process the algorithm, show the search

space and the selected solution graphically, and write a
file with the selected filter coefficients.

Since the filter coefficients can be positive or negative,
and we deal only with positive numbers, our method saves
signs to be treated separately. This was helpful for the
task of optimizing the multiplier block. Figure 2 shows
the architecture developed for this implementation, where
the signs S1..N of the coefficients C1..N were saved to be
control signs in the final summation block (the signal
actually selects between add or subtract functions). The
algorithm for common subexpression elimination
(Algorithm 2 described in the Section 3) was
implemented in C.

X

Y

1/SF

Multiplier Block

Clock
SN-2 SN-3 S1 S0

2’s
Comp

SN-1

Figure 2. Architecture of the hardware description
output.

This is a transposed direct form FIR filter where the
multiplier block receives the input signal X, and delivers
N (taps) multiplied outputs. A multiplier just before the
output Y is needed if we need to maintain the unity gain
in the pass band, since our method scaled all the
coefficients to find a better representation in the NPT
phase. This multiplier can be eliminated if the gain of the
filter is not critical.

6. RESULTS
After implementing the algorithm described in the

section 3, we analyzed the behavior of the NPT rounding
technique for several filter specifications. Our
experiments showed that it is very hard to get more than
20dB per PT digit (a similar result was stated in [5] for
CSD coefficients), and this is very dependent on the
frequency response shape and on the number of taps. Fig.
3 shows graphical results for the Low Pass (LP) filter LP1
specified in Table 2.

Dotted line in Fig. 3(a) and 3(b) shows the transfer
function for the FIR filter LP1 in fixed point. Solid lines
in Fig. 3(a) show the transfer functions for the 2PT
coefficient sets for all the 76 scale factors tested (0.5 to 2
in steps of 0.02). Fig. 3(b) compares the filter transfer
function for the LP1 with fixed point coefficients and the
optimized version with 2PT coefficient set selected by our
method. The insert in Fig. 3(b) shows that the effect of
the optimization is negligible in the in-band ripple.

Table 1 shows a comparison between the original
fixed-point coefficients and the reduced 2PT coefficients
for LP1 FIR filter (using the same scale factor for both
coefficient sets). As the coefficients are symmetrical, the
table presents only the first N/2+1 coefficients of the 49-
tap filter.

 The results presented in Table 1 show the capability of
the NPT phase in reducing the multiplier block in terms
of number of adders with small changes in the transfer
function, with the methodology adopted. As stated in
section 4, the sign of the coefficients are treated separately
in the final summation block (not considered here), so all
coefficients are positive. Note that the NPT technique not
only reduces the total number of adders but also the logic
depth in terms of number of adders needed to implement
the multipliers, which produces a delay reduction.

Table 1. Comparison of the coefficients
before and after the NPT phase.

The last phase of the algorithm is the common
subexpression elimination. Table 2 presents the
specifications some low pass (LP) and high pass (HP)
filters used to test our methodology. The parameters have
been selected to cover the 1PT to 4PT-reduced coefficients
and 10 to 16 bits fixed point. Table 4 summarizes the
results for the filter specifications presented in Table 2,
showing the number of adders for each case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

Normalized Frequency

G
ai

n
(d

B
)

 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

Normalized Frequency

G
ai

n
(d

B
)

(b)

Figure 3. (a) Fixed point (dotted) x 2PT for each scale
factor tested (solid), and (b) fixed point (dotted) x 2PT

selected (solid). Ripple in pass band (detail).

Table 3 shows that significant reduction in the number
of adders is achieved by applying either CSE or NPT
optimization separately. Our proposed methodology,
combining them appropriately, improves the results even
more. The great advantage of using the NPT phase is that
we greatly simplify the complexity of the multipliers by
controllably modifying the coefficients, with small and
acceptable changes in the filter transfer function. Also the
logic depth is guaranteed to be low in the NPT
optimization phase. Limiting the number of power-of-two

T
a

p

F
ix

e
d

P
o

in
t

N
um

 A
dd

er
s

L
og

ic
 D

e
pt

h

 O
p

tim
iz

e
d

2P
T

C

oe
ffi

ci
e

nt
s

N
u

m
.

A
dd

er
s

L
og

ic
 D

e
pt

h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

000000001

000000001

000000001

000000000

000000010

000000001

000000011

000000110

000000100

000000011

000001010

000000111

000000111

000010100

000010001

000001001

000100011

000100000

000001011

001000010

001001010

000001100

010101100

101000000

110011110

0

0

0

0

0

0

1

1

0

1

1

2

2

1

1

1

2

0

2

1

2

1

3

1

5

0

0

0

0

0

0

1

1

0

1

1

2

2

1

1

1

2

0

2

1

2

1

2

1

3

000000001

000000001

000000001

000000000

000000010

000000001

000000011

000000110

000000100

000000011

000001010

000001000

000001000

000010100

000010001

000001001

000100100

000100000

000001100

001000010

001001000

000001100

010100000

101000000

110000000

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

T
ot

a
l

 27

3
(m

ax
)

 16

1
(m

ax
)

0 0.05 0.1 0.15 0.2 0.25

-1

-0.8

-0.6

-0.4

-0.2

0

Normalized Frequency

G
ai

n
(d

B
)

(PT) terms in each coefficient also reduces the summation
tree needed to implement each multiplier [6] (as shown in
Table 1 for LP1 filter), reducing the delay. This delay can
be exchanged for lower power consumption through the
reduction of the supply voltage. Additionally, a lower
logic depth can lead to a reduction in the glitching
activity, hence reducing the power further.

The CSE phase improves the results by eliminating any
redundancies (common subexpressions among
multipliers) in the multiplier block, thus further reducing
the number of adders. A grouped bar graph is showed in
Figure 4.

Another benchmark was made to verify the
performance of the method for FPGA synthesis. Table 3
summarizes the parameters for the filter and for the tool
employed to synthesize the various VHDL descriptions of
the filter to a target FPGA. All the optimization phases in
the synthesis tool were left unchanged.

Table 2. Filters employed to evaluate the algorithms.

Parameter LP1 LP2 LP3 HP1 HP2

of Taps 49 31 71 31 51

Scale Range
(increment)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

0.5-2
(0.02)

Bits Fixed Point 10
(sign+9)

16
(sign+15)

16
(sign+15)

12
(sign+11)

16
(sign+15)

NPT digits 2 4 3 1 4

Pass Band
(normalized)

0-0.3 0-0.3 0-0.05 0.6-1 0.7-1

Max. Pass Band
Ripple

0.1 0.01 0.1 0.1 0.01

Stop Band
(normalized)

0.35-1 0.35-1 0.07-1 0-0.4 0-0.6

Stop Gain (dB) -40 -60 -60 -20 -60

Window Type Hamming Hamming Blackman Hamming Hamming

Table 3. Parameters for the obtained synthesis results.

Filter Form Transposed Direct Form

Input 16 bits samples

Output 32 bits samples

Coefficients 16 bits

FPGA EP20K200E

Synthesis tool Quartus II 2.2

Power estimation 500 random input vectors

Sample-rate frequency 10MHz

Table 4 shows the number of adders employed to
generate the multiplier block in some filters for all the
combinations of the two employed approaches. We can
notice in this table significant reductions in the number of
adders needed to implement the multiplier block are
achieved with each of the algorithms individually. When
combined together, the results improve further, as we
expected.

We present several design parameter results after
FPGA synthesis, namely the number of logic elements
(LE), the worst case delay, and the overall power
consumption under random inputs. We can observe in
Table 5 a significant reduction in the number of adders
and the power consumption when we make the NPT
coefficient reduction. In this table we can notice a few
lines with the same value, indicating that the CSE phase
does not lead to any improvement in the results (even
generating worse results in some cases). The explanation
of the seemingly poor performance of this optimization
phase is that the tool we are using (Quartus II 2.2) finds
out common subexpressions as redundant logic and
eliminates it.

Table 4. Optimization results for the filters in Table 2.

Filter Mul.-less CSE NPT NPT+CSE

 Add. % Add. % Add. % Add. %

LP1(fig.3) 27 100 16 59 11 41 9 33

LP2 59 100 31 53 38 64 25 42

LP3 135 100 68 50 75 56 47 35

HP1 16 100 14 88 0* 0 0* 0

HP2 87 100 50 57 55 63 37 43

Mean 100 61 44 31

*Only one PT term to compute; shift-only operation.

27

59

135

16

87

16

31

68

14

50

11

38

75

0

55

9

25

47

0

37

0

20

40

60

80

100

120

140

160

LP1 LP2 LP3 HP1 HP2

Unoptimized CSE NPT CSE+NPT

Figure 4. Combination of the two methods for the
filters presented in Table 2.

The power consumption reduction stems from three
factors: first, the smaller number of adders, second the
reduced (and controlled) logic depth from the NPT phase
reduces glitching activity, and third shorter paths may

allow for a supply voltage reduction if the same data rate
is intended.

7. CONCLUSION
From the results obtained we conclude that using NPT

coefficients representation leads to a great reduction in
the complexity of the multiplier block of a FIR filter, with
a small and controllable distortion in the transfer curve of
the filter. This is done by means of selecting the
appropriate fixed-point representation for the NPT
conversion process by means of scaling the floating-point
coefficients before its conversion to fixed point. The scale
factor that generates the best results is found by
exhaustive search along a discrete range of scale factors.

Table 5. FPGA synthesis results.

Filtro Optmization
Method

Adders #LE Delay Power

None 27 3017 44 325

CSE 16 3014 44 325

NPT 11 2630 35 169

LP1

CSE+NPT 9 2630 35 169

None 59 3428 66 1078

CSE 31 3488 72 1224

NPT 38 2798 55 530

LP2

CSE+NPT 25 2918 59 570

None 135 8062 86 2990

CSE 68 7756 76 2588

NPT 75 5742 65 967

LP3

CSE+NPT 47 6282 59 1138

None 16 1976 43 258

CSE 14 2033 45 296

NPT 0 1573 21 96

HP1

CSE+NPT 0 1573 21 96

None 87 5572 72 1463

CSE 50 5926 65 2118

NPT 55 4649 56 765

HP2

CSE+NPT 37 4882 60 952

The CSE optimization reduces the number of adders in
the multiplier block by sharing subexpressions common
among different multipliers. It can be combined with
NPT, leading to a better reduction in the number of
adders, as shown in the “Adders” column in Table 5.
Although the CSE phase reduces the number of adders of
the filter, the synthesized logic does not present any

improvement when we use CSE, as shown in Table 5
(#LE, Delay and Power columns). The reason for that is
that we use the FPGA synthesis tool in the standard
options, which includes an optimization phase. It
eliminates unnecessary logic, including redundant logic
(common subexpressions). The optimization makes the
task of the CSE algorithm and is applied to all versions of
the synthesized filters, including the non-optimized one,
leading to similar synthesis results whether CSE
optimization is applied or not.

The Delay results in Table 5 are estimated by the
synthesis tool. The restriction in the number of non-zero
digits in the coefficients reduced significantly the delay,
as expected.

Finally the Power results in Table 5 are estimated by
the tool by simulating the extracted circuit stimulated by a
random input signal. The reduction in the logic and the
logic depth by the NPT optimization reduced the circuit
subject to transiction and the glitching activity, leading to
great reductions in power comsumption.

We conclude that NPT reduces the FIR filter area,
delay and power for FPGA applications, while CSE does
not lead to any improvement, as explained above.

Future work will investigate the use of Signed Digit
representation and pipelined FIR optimization.

8. REFERENCES
[1] M. Potkonjak, M. B. Srivastava, and A. Chandrakasan,

“Efficient substitution of multiple Constant multiplication
by shifts and addition using iterative pairwise matching”.
In Proc. 31st ACM/IEEE Design Antomation Conf.,
(1994), 189-194

[2] M. Mehendale, S. D, Sherlekar, and G. Venkatesh,
“Syntesis of multiplier-less FIR filters with minimum
number of additions”, in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, (1995), 668-671

[3] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and
D. Iuraekova, “A new algorithm for elimination of
common subexpressions”, IEEE Trans. Computer-Aided
Design, 18. (Jan 1999), 58-68.

[4] H. Samueli, “An improved search algorithm for the design
of multiplier-less FIR filters with powers-of-two
coefficients”, IEE Trans. Circuits Syst., 36 (July 1989),
1044-1047.

[5] K-H Chen, T-D Chiueh, “Design and implementation of a
reconfigurable FIR filter”, Proc of 2003 Int. Symp.
Circuits Systems, ISCAS ’03, 3, (May 2003), 25-28.

[6] K. Hwang, “Computer arithmetic Principles, Architecture
and Design”: Wiley, 1979.

[7] C. Lim, J. B. Evans, and B. Liu, “Decomposition of binary
integers into signed power-of-two terms”, IEEE Trans.
Circuits Syst., 38, (June 1991) 667-672.

[8] J. Portela, E. Costa. J. Monteiro, “Optimal Combination of
Number of Taps and Coefficient Bit-Width for Low Power
FIR Filter Realization”, IEEE European Conference on
Circuit Theory and Design. (Sep. 2003), 145-148.

[9] Q. Zhao, Y. A. Tadokoro, “Simple Design of FIR Filters
with Powers-of-Two Coefficients”, IEEE Transactions on
Circuits and Systems. 35, 5 (May, 1988).

[10] R. W. Hamming, “Digital Filters”, Prentice Hall, 3rd ed.,
(1989).

[11] V. S. Rosa, S. Bampi, E. Costa, “Coefficient Optimization
for High Performance Parallel FIR Filters in FPGA”, XI
Workshop IBERCHIP. (Mar. 2005), 86-89.

-

