
 1  

 
TIME-OPTIMAL SYSTEM DESIGN PROBLEM BY GENERALIZED 

FORMULATION 
 

Alexander Zemliak, Ricardo Peña 
 

Puebla Autonomous University 
 

azemliak@fcfm.buap.mx, dapena@siu.buap.mx 
 

 
ABSTRACT 

 
The generalized formulation for analog system design was 
elaborated by means of the optimum control theory 
formulation. This methodology generalizes the design 
process and generates a set of the different design 
strategies that serves as the structural basis to the optimal 
strategy construction. The principal difference between this 
new approach and before elaborated theory is the more 
representative structural basis that was generated by the 
new system parameters definition. The main equations for 
the system design process were elaborated by the control 
theory. These equations include the special control 
functions that are introduced into consideration artificially 
to generalize the total design process. Numerical results 
demonstrate the efficiency and perspective of the proposed 
approach for both passive and active nonlinear electronic 
circuits. 

 
1. INTRODUCTION 

 
One of the main problems of the total quality design 
improvement is the problem of the computer time 
reduction for a large system design. This problem has a 
special significance for the VLSI electronic circuit design. 
The traditional system design methodology includes two 
main parts: the model of the system that can be described 
as algebraic equations or differential-integral equations and 
a parametric optimization procedure that achieves the cost 
function optimal point. By this conception it is possible to 
change optimization strategy and use different models and 
different analysis methods. However, the time of the large-
scale circuit analysis and the time of optimization 
procedure increase when the network scale increases.  
 There are some powerful methods that reduce the 
necessary time for the circuit analysis. Because a matrix of 
the large-scale circuit is a very sparse, the special sparse 
matrix techniques are used successfully for this purpose 
[1]-[2]. Other approach to reduce the amount of 
computational required for the linear and nonlinear 
equations is based on the decomposition techniques. The 

partitioning of a circuit matrix into bordered-block 
diagonal form can be done by branches tearing as in [3], or 
by nodes tearing as in [4] and jointly with direct solution 
algorithms gives the solution of the problem. The 
extension of the direct solution methods can be obtained by 
hierarchical decomposition and macromodel representation 
[5]. An alternative approach for achieving decomposition 
at the nonlinear level consists on a special iteration 
techniques and has been realized in [6] for the iterated 
timing analysis and circuit simulation. Optimization 
technique that is used for the circuit optimization and 
design, exert a very strong influence on the total necessary 
computer time too. The numerical methods are developed 
both for the unconstrained and for the constrained 
optimization [7] and will be improved later on. The 
practical aspects of these methods were developed for the 
electronic circuits design with the different optimization 
criterions [8]-[9]. 
 The system design ideas described above can be named 
as the traditional approach or the traditional strategy 
because the analysis method is based on the Kirchhoff 
laws. 
 The other formulation of the circuit optimization 
problem was developed in heuristic level some decades 
ago [10]. This idea was based on the Kirchhoff laws 
ignoring for all the circuit or for the circuit part. The 
special cost function is minimized instead of the circuit 
equation solving. This idea was developed in practical 
aspect for the microwave circuit optimization [11] and for 
the synthesis of high-performance analog circuits [12] in 
extremely case, when the total system model was 
eliminated. The last idea that excludes the Kirchhoff laws 
can be named as the modified traditional design strategy. 
 Nevertheless all these ideas can be generalized to 
reduce the total computer design time for the system 
design. This generalization can be done on the basis of the 
control theory approach and includes the special control 
function to control the design process. This approach 
consists of the reformulation of the total design problem 
and generalization of it to obtain a set of different design 
strategies inside the same optimization procedure [13]. The 
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number of the different design strategies, which appear in 

the generalized theory, is equal to M2  for the constant 
value of all the control functions, where M is the number of 
dependent parameters. These strategies serve as the 
structural basis for more strategies construction with the 
variable control functions. The main problem of this new 
formulation is the unknown optimal dependency of the 
control function vector that satisfies to the time-optimal 
design algorithm. 
 However, the developed theory [13] is not the most 
general. In the limits of this approach only initially 
dependent system parameters can be transformed to the 
independent but the inverse transformation is not supposed. 
The next more general approach for the system design 
supposes that initially independent and dependent system 
parameters are completely equal in rights, i.e. any system 
parameter can be defined as independent or dependent one. 
In this case we have more vast set of the design strategies 
that compose the structural basis and more possibility to 
the optimal design strategy construct. 
 

2. PROBLEM FORMULATION 
 
In accordance with the new design methodology [13] the 
design process is defined as the problem of the cost 

function ( )C X  minimization for X R N∈  by the 
optimization procedure, which can be determined in 
continuous form as: 
 

  ( )dx
dt

f X Ui
i= , ,       (1)  

  
 
  Ni ,...,2,1=  

 
and by the analysis of the electronic system model in the 
next form: 
 

      ( ) ( )1 0− =u g Xj j ,       (2) 

 
        j M= 1 2, ,. .. ,  
 
where N=K+M, K is the number of independent system 
parameters, M is the number of dependent system 
parameters, X is the vector of all variables 
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control variables ( )U u u uM= 1 2, ,..., ;  uj ∈ Ω ;  

{ }Ω = 0 1; .  
 The functions of the right part of system (1) have 
dependency from the concrete optimization algorithm and, 
for   instance,   for   the   gradient   method   are 
determined as: 
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x i
'   is equal to  ( )x t dti − ;   ( )η i X   is the implicit 

function  ( ( )x Xi i= η  )  that is determined by the system 
(2), C(X) is the cost function of the design process.  
 The problem of the optimal design algorithm searching 
is determined now as the typical problem of the functional 
minimization of the control theory. The total computer 
design time serves as the necessary functional in this case. 
The optimal or quasi-optimal problem solution can be 
obtained on the basis of analytical [14] or numerical [15]-
[16] methods. By this formulation the initially dependent 
parameters for i K K N= + +1 2, ,... ,  can be transformed to 
the independent ones when u j =1 and it is independent 

when u j =0. On the other hand the initially independent 

parameters for i K= 1 2, , .. . , , are independent ones always. 
 We have developed in the present paper the new 
approach that permits to generalize more the above 
described design methodology. We suppose now that all 
of the system parameters can be independent or dependent 
ones. In this case we need to change the equation (2) for 
the system model definition and change the equation (3) 
for the right parts description.  
 Equation (2) defines the system model and is 
transformed now to the next one: 

 
( ) ( ) 01 =− Xgu ji        (4) 

 
Ni ,...,2,1=  and j ∈ J 
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where J is the index set for all those functions ( )Xg j  for 

which  ui = 0, J = {j1, j 2, . . .,jz},  js ∈ Π   with s = 1, 2, . 
. ., Z,  Π  is the set of the indexes from 1 to M, Π = {1, 2, . 
. ., M}, Z is the number of the equations that will be left in 
the system (4),  Z ∈{0, 1. . ., M}. The right hand side of 
system (1) is defined now as:  
 

( ) ( )

( ) ( ) ( ){ }Xdttx
dt
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where F(X,U) is the generalized cost function and it is 
defined as: 
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This definition of the design process is more general than 
in [13]. It generalizes the methodology for the system 
design and produces more representative structural basis of 
different design strategies. The total number of the 
different strategies, which compose the structural basis, is 

equal to ∑
=

+

M

i

i
MKC

0

. We expect new possibilities to 

accelerate the design process in this case. 
 

3. NUMERICAL RESULTS 
 
Some non-linear passive and active electronic circuits have 
been analyzed to demonstrate developed general system 
design approach. The circuits have various nodal numbers 
from 1 to 5. The numerical results correspond to the 
optimized integration step for system (1) integration.  
 
3.1. Example 1 
The simplest nonlinear circuit in Fig. 1 is analyzed. The 
nonlinear element has the following dependency: 

10 bVrRn += . Using the Laws of Kirchhoff we have: 

 

( ) ( ) 02
1220

2
1 =−++≡ xxbxrxXg ,     (7) 

 

where the coordinates ( )21 , xx  of the vector X are 

defined by means of 1
2
1 Rx = , 12 Vx = . This definition 

overcomes the problem of the positive restriction for the 
resistance.   

 
 

Figure 1. Simplest one node circuit.  

 
Only one control function is defined in the limits of the 
previously defined methodology [13] and only two 
different design strategies comp ose the structural basis in 
this case (u=0 and u=1). However, we need to introduce 
two control functions and three different design strategies 
for new generalized formulation. We have now the control 
vector ( )21 , uuU  and three different design strategies: 

(1,0), (1,1), (0,1). The last strategy is the new one.  
 
3.1.1. Strategy (1,0) 
This is the traditional design strategy. In this case the 

parameter 1x  is an independent one and 2x  is a 

dependent one. The control vector has the next form: 
(1,0). The optimization procedure is done by the equation  

11 // dxdFdtdx −= , with the cost function 

( ) ( ) ( )2

2 kxXCXF −=≡  and 2x  can be calculated by the 

analytic formula: 
 

( ) ( ) bbxrxrxx 2/4 2
1

2

0
2
10

2
12 



 ++++−= . 

 
3.1.2. Strategy (1,1) 
This is the modified traditional design strategy. Both 

parameters 1x  and 2x  are independent and two equations 

for the optimization procedure  can  be  defined  now in the 

next form: 11 // dxdFdtdx −= , 22 // dxdFdtdx −=  with 

the objective function ( ) ( ) ( )XgXCXF 2+≡ . 

 
3.1.3. Strategy (0,1) 
This is the new strategy, which did not appear in 

previously developed theory. In this case 1x  is a dependent 

parameter and 2x  is independent one. The optimization 

procedure is defined by the equation   22 // dxdFdtdx −=  

with the objective function ( ) ( ) ( )2
2 kxXCXF −=≡ . 

The dependent parameter 1x  is calculated now from (7) as 

( ) ( )22201 1/ xxbxrx −+= . We have an analytical 

solution due to the very simple example. We need to solve 
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system (4) by means of the Newton-Raphson method for 
all others examples. 
 
3.1.4. Results 
The numerical results for three above mentioned strategies 
are shown in Table 1. It is interesting that the new design 
strategy (0,1), which appears in generalized theory, has the 
iteration number and the total design time lesser than 
others. This design strategy has the time gain 1.75 times 
with respect to the traditional strategy (1,0).  
 

Table 1. Total set of design strategy structural basis . 

 

 
3.2.  Example 2 
The passive four-node nonlinear circuit is analyzed below 
(Fig. 2) on basis of the proposed general design 
methodology. This  problem includes five independent 

parameters ( )54321 ,,,, xxxxx , where 1
2
1 yx = , 2

2
2 yx = , 

3
2
3 yx = , 4

2
4 yx = , 5

2
5 yx = , and four originally 

dependent parameters ( )9876 ,,, xxxx , where 16 Vx = , 

27 Vx = , 38 Vx = , 49 Vx = . The control vector U 

includes nine components ( )921 ,...,, uuu . 

The mathematical model of the circuit can be writing 
as the next system:  
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2
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2
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xxxxx
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( ) ( ) 09
2
5

2
48

2
44 =+−≡ xxxxxXg      

 
where ( )2

21111 VVbay nnn −⋅+= , ( )2
32222 VVbay nnn −⋅+= . 

The system model (4) includes four equations where each 

function ( )Xg j  is defined by (8). 

 
 

Figure 2. Four-node circuit topology. 
 
 
The optimization procedure (1) includes nine equations. 
System (8) is solved by the Newton-Raphson method. The 
cost function C(X) of the design process is defined by the 
following form:  

 
    ( ) ( ) ( ) ( )2

287
2

176
2

09 kxxkxxkxXC −−+−−+−= .      (9)  

 
The total number of the different design strategies that 
compose the structural basis of the generalized theory is 

equal to 256
4

0
9 =∑

=i

iC . At the same time the structural 

basis of the previous developed theory includes 16 
strategies only. It is clear that not all the new strategies 
lead to the design problem solution. Some strategies have a 
bad stability. Nevertheless, there are many new strategies 
that have very high design properties. The results of the 
structural basis strategies that include all the “old” 
strategies  (the last 16 strategies) and some new strategies 
are shown in Table 2. The strategy 13 is the traditional one. 
There are seven different strategies among “old” group that 
have the design time less that the traditional strategy. 
These are the strategies 16, 18, 20, 24, 26, 27 and 28. The 
strategy 18 is the optimal one among all the “old” 
strategies and it has the time gain 5.06 with respect to the 
traditional design strategy. On the other hand the best 
strategy among all the strategies (number 7) of the Table 2 
has the time gain 29.2. So, we have the additional 
acceleration 5.77 times. This effect was obtained on basis 
of more extensive structural basis and serves as the 
principal result of the new generalized methodology. We 
can suppose that the posterior analysis and possible control 
vector U optimization can increase this time gain. This 
optimization increases the time gain for before elaborated 
theory as shown in [17] and there are no obstacles to 
improve this index for new generalized approach. 
 

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2) number time (sec)
1      ( 1 0 ) 9 0.000131
2      ( 1 1 ) 26 0.002353
3      ( 0 1 ) 5 0.000075
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Table 2. Some strategies of the structural basis for four-
node circuit. 

 

 
3.3.  Example 3 
In Fig. 3 there is a circuit that has 6 independent variables 
as admittance y y y y y y1 2 3 4 5 6, , , , ,  (K=6) and 5 dependent 
variables as nodal voltages  V V V V V1 2 3 4 5, , , ,   (M=5) at the 
nodes 1, 2, 3, 4, 5. The nonlinear elements have next 

dependency: ( )2
23111 VVbay nnn −⋅+= , ( )y a b V Vn n n2 2 2 4 2

2
= + ⋅ − . 

The vector X includes eleven components. The first six 

components are defined as: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 

4
2
4 yx = , 5

2
5 yx = , 6

2
6 yx = . The others components are 

defined as: 17 Vx = , 28 Vx = , 39 Vx = , 410 Vx = , 

511 Vx = . The control vector U includes eleven 

components too. The total structural basis includes 1024 
different strategies in the limits of the new approach. The 
previous structural basis includes 32 strategies only. 

The mathematical model (4) of this circuit is defined 
on the basis of nodal method and includes five equations in 

 
 

Figure 3.  Five-node circuit topology. 
 
this case. The optimization procedure includes eleven 
equations and it is based on formulas (1) and (5). 

The cost function C(X) is defined by the formula 
similar to (9) with the necessary index correction for all the 
components: 
 

( ) ( ) ( )[ ] ( )[ ]22
2

109

2

1
2

98
2

011 kkxxkkxxkkxXC −−+−−+−= . 
 
 
The results for old structural basis strategies are shown in 
Table 3a for those strategies that have the computer time 
less than the traditional one. 
 

Table 3a. Some strategies of old structural basis. 
 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9) number time (sec)
1          ( 1 1 1 0 1 0 0 0 1 ) 5 0.0031
2          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4312
3          ( 1 1 1 0 1 1 0 0 1 ) 5 0.0029
4          ( 1 1 0 1 1 1 1 1 0 ) 119 0.0209
5          ( 1 1 1 1 0 0 1 0 1 ) 101 0.0232
6          ( 1 1 1 0 1 0 0 1 1 ) 15 0.0134
7          ( 1 1 1 0 1 1 1 0 1 ) 5 0.0009
8          ( 1 1 1 0 1 1 1 1 1 ) 101 0.0243
9          ( 1 1 1 1 0 0 1 1 1 ) 185 0.0324

10          ( 1 1 1 1 0 1 0 0 1 ) 74 0.0102
11          ( 1 1 1 1 0 1 0 1 1 ) 121 0.0254
12          ( 1 1 1 1 0 1 1 1 1 ) 159 0.0127
13          ( 1 1 1 1 1 0 0 0 0 ) 33 0.0263
14          ( 1 1 1 1 1 0 0 0 1 ) 397 0.4317
15          ( 1 1 1 1 1 0 0 1 0 ) 6548 7.1392
16          ( 1 1 1 1 1 0 0 1 1 ) 76 0.0122
17          ( 1 1 1 1 1 0 1 0 0 ) 456 0.5113
18          ( 1 1 1 1 1 0 1 0 1 ) 24 0.0052
19          ( 1 1 1 1 1 0 1 1 0 ) 3750 4.3661
20          ( 1 1 1 1 1 0 1 1 1 ) 90 0.0095
21          ( 1 1 1 1 1 1 0 0 0 ) 68 0.0354
22          ( 1 1 1 1 1 1 0 0 1 ) 596 0.6213
23          ( 1 1 1 1 1 1 0 1 0 ) 5408 6.2191
24          ( 1 1 1 1 1 1 0 1 1 ) 78 0.0255
25          ( 1 1 1 1 1 1 1 0 0 ) 238 0.2104
26          ( 1 1 1 1 1 1 1 0 1 ) 77 0.0227
27          ( 1 1 1 1 1 1 1 1 0 ) 139 0.0131
28          ( 1 1 1 1 1 1 1 1 1 ) 131 0.0103

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11) number time (sec)
1          ( 1 1 1 1 1 1 0 0 0 0 0 ) 15026 11.587
2          ( 1 1 1 1 1 1 0 0 0 1 1 ) 4387 1.522
3          ( 1 1 1 1 1 1 0 0 1 1 0 ) 1479 2.043
4          ( 1 1 1 1 1 1 0 0 1 1 1 ) 340 0.041
5          ( 1 1 1 1 1 1 0 1 0 1 0 ) 1480 1.743
6          ( 1 1 1 1 1 1 0 1 0 1 1 ) 563 0.072
7          ( 1 1 1 1 1 1 0 1 1 0 0 ) 154 0.021
8          ( 1 1 1 1 1 1 0 1 1 0 1 ) 174 0.023
9          ( 1 1 1 1 1 1 0 1 1 1 0 ) 368 0.043

10          ( 1 1 1 1 1 1 0 1 1 1 1 ) 688 0.051
11          ( 1 1 1 1 1 1 1 0 0 1 0 ) 65 0.011
12          ( 1 1 1 1 1 1 1 0 0 1 1 ) 4312 0.821
13          ( 1 1 1 1 1 1 1 0 1 0 0 ) 5601 7.112
14          ( 1 1 1 1 1 1 1 0 1 0 1 ) 854 0.081
15          ( 1 1 1 1 1 1 1 0 1 1 0 ) 483 0.052
16          ( 1 1 1 1 1 1 1 0 1 1 1 ) 367 0.031
17          ( 1 1 1 1 1 1 1 1 0 0 0 ) 354 0.352
18          ( 1 1 1 1 1 1 1 1 0 0 1 ) 548 0.063
19          ( 1 1 1 1 1 1 1 1 0 1 0 ) 98 0.012
20          ( 1 1 1 1 1 1 1 1 0 1 1 ) 1144 0.102
21          ( 1 1 1 1 1 1 1 1 1 0 0 ) 80 0.009
22          ( 1 1 1 1 1 1 1 1 1 0 1 ) 535 0.044
23          ( 1 1 1 1 1 1 1 1 1 1 0 ) 194 0.01
24          ( 1 1 1 1 1 1 1 1 1 1 1 ) 254 0.011
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 The results for some new structural basis  strategies are 
shown in Table 3b.  

 
Table 3b. Some strategies of new structural basis. 

 

 
 
The strategy 1 of Table 2a is the traditional one. The time 
gain of the best old strategy (23 from Table 2a) with 
respect to the traditional strategy is equal to 1158. This is 
a significant time gain, but we have more perspective 
strategies into the new structural basis. The design time 
for strategies 11,12,14,15 from Table 2b is less than the 
best strategy 23 from Table 2a. The best strategy 11 has 
the time gain 11587, i.e. ten times more. These examples 
show that the time gain of the new structural basis 
increases when the circuit size and complexity increase. 
 
3.4. Example 4 
It is interesting to analyze the active circuit with 
transistors. The one-transistor amplifier circuit is shown in 
Fig. 4. In this case there are three independent variables 

321 ,, yyy  as admittance (K=3) and three dependent 

variables 321 ,, VVV  as nodal voltages (M=3). The state 

parameter vector X includes six components: 1
2
1 yx = , 

2
2
2 yx = , 3

2
3 yx = , 14 Vx = , 25 Vx = , 36 Vx = . The 

design process has been realized on DC mode. The Ebers- 

 
 

Figure 4. One transistor amplifier. 
 
Moll static model of the transistor has been used [18]. The 
cost function ( )C X  has been determined as the sum of 

the squared differences between beforehand-defined 
values and current values of the voltages for the transistor 
junctions. The old structural basis includes 8 strategies 
only, and the new basis includes 32 strategies. The results 
of this circuit design are shown in Tables 4a and 4b. Table 
4a includes all strategies of old structural basis and Table 
4b includes some strategies of new structural basis. The 
best strategy of old basis (8 from Table 4a) has time gain 
14.3. The best strategy of new basis (1 from Table 4b) has 
time gain 58.6. So, we have an additional acceleration 
more than 4 times.  
 

Table 4a. Old structural basis strategies. 
 

 
Table 4b. Some strategies of new structural basis. 

 

 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11) number time (sec)
1         ( 1 0 1 1 1 1 0 1 1 1 1 ) 95361 24.254
2         ( 1 0 1 1 1 1 1 1 0 1 1 ) 16457 14.521
3         ( 1 0 1 1 1 1 1 1 1 0 1 ) 2649 0.311
4         ( 1 0 1 1 1 1 1 1 1 1 0 ) 458 0.901
5         ( 1 1 1 0 0 1 1 1 1 1 1 ) 227 0.201
6         ( 1 1 1 0 1 0 1 1 1 1 1 ) 956 0.109
7         ( 1 1 1 0 1 1 0 1 1 1 1 ) 958 0.111
8         ( 1 1 1 0 1 1 1 0 1 1 1 ) 1369 0.162
9         ( 1 1 1 0 1 1 1 1 0 1 1 ) 1352 0.141

10         ( 1 1 1 0 1 1 1 1 1 1 0 ) 13556 1.733
11         ( 1 1 1 1 0 1 0 0 0 0 1 ) 5 0.001
12         ( 1 1 1 1 0 1 0 0 0 1 1 ) 20 0.002
13         ( 1 1 1 1 0 1 0 1 1 1 1 ) 134 0.011
14         ( 1 1 1 1 0 1 1 0 1 1 1 ) 51 0.0095
15         ( 1 1 1 1 0 1 1 1 0 1 1 ) 45 0.0022
16         ( 1 1 1 1 0 1 1 1 1 0 1 ) 82 0.012
17         ( 1 1 1 1 0 1 1 1 1 1 1 ) 142 0.013
18         ( 1 1 1 1 1 0 0 1 1 1 1 ) 221 0.032
19         ( 1 1 1 1 1 0 1 0 1 1 1 ) 742 0.091
20         ( 1 1 1 1 1 0 1 1 0 1 1 ) 77 0.011
21         ( 1 1 1 1 1 0 1 1 1 0 1 ) 266 0.033

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2, u3, u4, u5, u6 ) number time (sec)
1          ( 1 0 1 1 1 1 ) 30 0.053
2          ( 1 1 0 1 1 1 ) 778 1.391
3          ( 1 0 1 1 1 0 ) 5599 25.094
4          ( 0 1 1 1 0 0 ) 1285 10.902
5          ( 0 1 1 1 1 0 ) 3015 10.998
6          ( 0 1 1 1 0 1 ) 47 0.089
7          ( 1 1 0 0 1 1 ) 174 0.465
8          ( 1 1 0 1 0 1 ) 606 1.223

N Control functions  Calculation results
vector Iterations Total design

 U (u1, u2, u3, u4, u5, u6 ) number time (sec)
1          ( 1 1 1 0 0 0 ) 826 3.108
2          ( 1 1 1 0 0 1 ) 707 1.813
3          ( 1 1 1 0 1 0 ) 1791 4.594
4          ( 1 1 1 0 1 1 ) 1224 2.709
5          ( 1 1 1 1 0 0 ) 887 2.163
6          ( 1 1 1 1 0 1 ) 153 0.335
7          ( 1 1 1 1 1 0 ) 1045 2.222
8          ( 1 1 1 1 1 1 ) 309 0.217



 7  

 
 

Figure 5. Two transistor cells  amplifier. 
 
3.5.  Example 5 
Two-transistor cells  amplifier is shown in Fig. 5. In this 
case there are five independent variables 

54321 ,,,, yyyyy  as admittance (K=5) and three 

dependent variables 54321 ,,,, VVVVV  as nodal voltages 

(M=5). The state parameter vector X includes six 

components: 1
2
1 yx = , 2

2
2 yx = , 3

2
3 yx = , 4

2
4 yx = , 

5
2
5 yx = , 16 Vx = , 27 Vx = , 38 Vx = , 49 Vx = , 

510 Vx = . The old structural basis includes 32 strategies 

only, and the new basis includes 638 strategies. The 
results of this circuit design are shown in Tables 5a and 
5b. Table 5a includes some strategies of old structural 
basis and Table 5b includes some strategies of new 
structural basis. 
 The best strategy of old structural basis (4 from Table 
5a) has the time gain 258.2. On the other hand the best 
strategy of new basis (19 from Table 5b) has the time gain 
4118.5. So, we have an additional acceleration more than 
15.95 times in this case.  
 

Table 5a. Some strategies of old structural basis. 
 

Table 5b. Some strategies of new structural basis. 
 

 
This is the main result of new generalized system design 
methodology. These examples show better perspectives of 
more general formulation of the design process. 
 

4. CONCLUSIONS 
 
The traditional method for the analog circuit design is not 
time-optimal. The problem of the optimal algorithm 
construction can be solved more adequately on basis of 
the optimal control theory application. The time-optimal 
design algorithm is formulated as the problem of the 
functional optimization of the optimal control theory. In 
this case it is necessary to select one optimal trajectory 
from quasi-infinite number of different design strategies 
that are produced. The new and more complete approach 

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10) number time (sec)
1          ( 0 0 0 0 0 1 1 1 1 1 ) 55 0.159
2          ( 0 0 0 0 1 1 1 1 1 0 ) 7912 23.985
3          ( 0 0 0 0 1 1 1 1 1 1 ) 209 0.429
4          ( 0 0 0 1 1 1 1 1 0 0 ) 57245 229.963
5          ( 0 0 0 1 1 1 1 1 1 1 ) 420 0.561
6          ( 0 0 1 1 1 1 1 0 1 1 ) 25884 52.022
7          ( 0 0 1 1 1 1 1 1 0 1 ) 232 0.309
8          ( 0 0 1 1 1 1 1 1 1 0 ) 138426 230.014
9          ( 0 0 1 1 1 1 1 1 1 1 ) 381 0.319

10          ( 0 1 0 1 0 1 0 1 1 1 ) 201 0.402
11          ( 0 1 0 1 1 1 0 1 0 0 ) 47186 190.979
12          ( 0 1 0 1 1 1 0 1 1 1 ) 242 0.329
13          ( 0 1 0 1 1 1 1 1 1 1 ) 371 0.319
14          ( 0 1 1 0 1 1 0 1 1 1 ) 338 0.441
15          ( 0 1 1 0 1 1 1 1 1 1 ) 414 0.342
16          ( 0 1 1 1 0 1 0 1 1 1 ) 156 0.209
17          ( 0 1 1 1 0 1 1 1 1 1 ) 480 0.409
18          ( 0 1 1 1 1 1 0 1 1 0 ) 8611 11.998
19          ( 0 1 1 1 1 1 0 1 1 1 ) 68 0.081
20          ( 0 1 1 1 1 1 1 0 1 1 ) 22381 26.012
21          ( 0 1 1 1 1 1 1 1 0 0 ) 31525 55.063
22          ( 0 1 1 1 1 1 1 1 1 0 ) 9264 8.961
23          ( 0 1 1 1 1 1 1 1 1 1 ) 205 0.091
24          ( 1 0 0 0 0 0 1 1 1 1 ) 98 0.292
25          ( 1 0 0 0 0 1 1 1 1 1 ) 150 0.309
26          ( 1 0 0 1 1 0 1 1 0 0 ) 40121 165.004
27          ( 1 0 0 1 1 0 1 1 1 1 ) 286 0.379
28          ( 1 0 0 1 1 1 1 1 0 1 ) 170 0.239
29          ( 1 0 0 1 1 1 1 1 1 1 ) 547 0.479
30          ( 1 0 1 0 1 1 1 1 1 1 ) 909 0.779
31          ( 1 0 1 1 1 0 1 1 1 1 ) 490 0.419
32          ( 1 0 1 1 1 1 1 1 0 0 ) 35624 63.014
33          ( 1 0 1 1 1 1 1 1 1 1 ) 691 0.341
34          ( 1 1 0 0 0 0 0 1 1 1 ) 4557 22.019
35          ( 1 1 0 0 0 1 1 1 1 1 ) 450 0.619
36          ( 1 1 0 0 1 1 1 1 1 1 ) 370 0.321
37          ( 1 1 0 1 0 0 0 1 0 1 ) 3637 18.005
38          ( 1 1 0 1 0 0 0 1 1 1 ) 2429 7.977
39          ( 1 1 0 1 0 1 1 1 1 1 ) 458 0.389

N Control functions  Calculation results
vector Iterations Total design

 U (u1,u2,u3,u4,u5,u6,u7,u8,u9,u10) number time (sec)
1         ( 1 1 1 1 1 0 0 0 0 0 ) 83402 333.602
2         ( 1 1 1 1 1 0 0 0 1 1 ) 6695 8.991
3         ( 1 1 1 1 1 0 0 1 1 1 ) 3395 4.007
4         ( 1 1 1 1 1 0 1 1 1 1 ) 253 1.292
5         ( 1 1 1 1 1 1 0 0 0 1 ) 70887 125.994
6         ( 1 1 1 1 1 1 0 0 1 1 ) 93677 92.018
7         ( 1 1 1 1 1 1 0 1 1 1 ) 588 2.701
8         ( 1 1 1 1 1 1 1 0 0 1 ) 148299 158.038
9         ( 1 1 1 1 1 1 1 0 1 1 ) 24678 15.945

10         ( 1 1 1 1 1 1 1 1 0 0 ) 56464 57.015
11         ( 1 1 1 1 1 1 1 1 0 1 ) 496 2.403
12         ( 1 1 1 1 1 1 1 1 1 0 ) 5583 2.007
13         ( 1 1 1 1 1 1 1 1 1 1 ) 614 1.699
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to the electronic system design methodology has been 
developed now by means of broadened structural basis 
definition. The total number of the different design 
strategies, which compose the structural basis by this 

approach, is equal to ∑
=

+

M

i

i
MKC

0

. This new structural basis 

serves as the necessary set for the optimal design strategy 
search. This basis includes new and very perspective 
strategies that can be used for the time-optimal design 
algorithm construction. This approach can reduce 
considerably the total computer time for the system 
design. Analysis of the different electronic systems gives 
the possibility to conclude that the potential computer 
time gain that can be obtained by means of the broadened 
structural basis is significantly larger than for previous 
developed methodology. 
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