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ABSTRACT 

 
This article address efficient hardware implementations for multiplication over GF(2163). Hardware implementations of 
multiplication algorithms are suitable for elliptic curve cryptoprocessor designs, which allow that elliptic curve based 
cryptosystems implemented in hardware provide more physical security and higher speed than software implementations. 
In this case, the multipliers were designed using conventional, modified and fast multiplication algorithms, the synthesis 
and simulation were carried out using Quartus II v.5.0 of Altera, and the designs were synthesized on the Stratix II 
EP2S60F1020C3. The simulation results show that the multipliers designed present a very good performance using small 
area. 
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ABSTRACT 
 
This article address efficient hardware implementations 
for multiplication over GF(2163). Hardware 
implementations of multiplication algorithms are 
suitable for elliptic curve cryptoprocessor designs, which 
allow that elliptic curve based cryptosystems 
implemented in hardware provide more physical security 
and higher speed than software implementations. In this 
case, the multipliers were designed using conventional, 
modified and fast multiplication algorithms, the 
synthesis and simulation were carried out using Quartus 
II v.5.0 of Altera, and the designs were synthesized on 
the Stratix II EP2S60F1020C3. The simulation results 
show that the multipliers designed present a very good 
performance using small area. 
 

1.  INTRODUCTION 
 

In order to protect or exchange confidential data, the 
cryptography plays an important role in the security of 
the information. Therefore, it is necessary to implement 
efficient cryptosystems, which can support applications 
economically feasible. In this context, public key 
cryptography based on elliptic curves is widely used 
because it presents higher security per key bit, and their 
two main applications are the private key exchange and 
the digital signature. Additionally, the Elliptic Curve 
Cryptosystems (ECC) can be used in applications where 
the computation resources are limited such as smart 
cards and cellular telephones. The ECC systems are 
included in the NIST and ANSI standards, and the 
principal advantage over other systems of public key like 
RSA is the size of the parameters, which are very small, 
however the ECC systems provide the same level of 
computational security.  

On the other hand, the algorithms used for elliptic 
curve cryptosystems are divided hierarchically into three 
levels. The arithmetic level, the group operation level 
and the encryption level. Therefore, in order to achieve 
efficient hardware implementations it is evident to reach 
the best algorithm optimization for each level. However, 

it is import to mention that the most expensive operation 
applied in elliptic curve based cryptosystems is the 
“scalar multiplication” of a large natural number with a 
point on an elliptic curve [1]. In this case, the 
performance of an elliptic curve cryptoprocessor 
depends on the multiplication over GF(2m). Therefore, 
the multiplier is the most important functional block for 
elliptic curve cryptoprocessor design.  

In the literature are presented few hardware designs 
for the gaussian normal basis multiplication over 
GF(2m). In [2], V. Trujillo, J. Velasco and J. C. López 
present the hardware design for the Gaussian normal 
multiplier over GF(2163). In [3], Elia and Leone present a 
theoretic study about a general algorithm to design fast 
parallel multipliers in any basis over GF(2m). The 
algorithm has been applied to gaussian normal basis 
multiplication over small galois field (GF(273)). 
However, for m > 73 is not considered. Additionally, the 
total number of gates (XOR and AND) is not guaranteed 
to be the minimum. In this case, the algorithm is aimed 
at minimizing the number of XOR gates. In [4], Hua Li 
and Chang N. Zhang present an algorithm to design a 
low complexity programmable cellular automata based 
versatile modular multiplier over GF(2m). 

This work address efficient hardware 
implementations for gaussian normal basis and 
polynomial basis multiplication over GF(2163). In this 
case, the multipliers designed present a good speed/area 
ratio, which is very suitable for elliptic curve 
cryptoprocessor design. Therefore, elliptic curve based 
cryptosystems can be used in applications that require 
small area, good speed and low consumption power, 
such as smart cards and cellular telephones. 
 This article is organized as follows. Initially, 
sections 2, 3 and 4 present the basic concepts on GF(2m) 
arithmetic and algorithms for gaussian normal basis and 
polynomial basis multiplication over GF(2m). In section 
5, the hardware architectures for the multipliers are 
described. In section 6, the simulation results are 
presented. Finally, section 7 presents the conclusions and 
the future work. 
 



 
2.  GF(2m)  ARITHMETIC 

 
2.1 Concepts on gaussian normal basis 
 

Normal Basis representations of an element in the 
finite field GF(2163) have the computational advantage 
that squaring an element can be done very efficiently. 
However multiplying distinct elements, can be 
cumbersome in general for this reason, ANSI X9.62 
specifies that Gaussian Normal Basis be used, for which 
multiplication is both simpler and more efficient [5]. 

A normal basis for GF(2m) is as follows: 
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In this case, the multiplicative identity element is 

represented by the bit string of all 1’s. While the additive 
identity element is represented by the bit string of all 0’s. 

An important result for the arithmetic of the 
Gaussian Normal Basis is the Fermat’s Theorem. For all 
β ∈ GF(2m) so that: 
 
 
This theorem is important to carry out the squaring of an 
element in the finite field GF(2m). 

 
 

2.2 GF(2m) arithmetic for gaussian normal basis  
 
 
 
The following arithmetic operations are defined on the 
elements of GF(2m) when using a GNB of type T: 

  
 Addition: 
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 Squaring:  
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   In this case, squaring is a simple rotation of the 
vector representation. 
 
 Multiplication:  

 
Let  and let u ∈ GF(p) be an element of 
order  T. Define the sequence J(1), J(2), ..., J(p-1) by: 
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 Inversion:  

 

If a ≠ 0 and a ∈ GF(2m), the inverse of a, is the unique 
element c ∈ GF(2m) for which a•c = 1 (c = a-1). 

The algorithm used for inversion is based on the 
identity: ββ =
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In [6], Itoh and Tsujii proposed a method that 

minimizes the number of multiplications to calculate the 
inversion, which is based on the following identities: 
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2.3 Concepts on polynomial basis 
 

This basis is also known as the canonical or 
standard basis, is defined as the set {1, α, α2,…,αm-1} 
where α is a root of the irreducible polynomial f(x). 
Where f(x)=xm+fm-1xm-1+…f2x2+f1x+f0 (fi ∈{0,1}) is an 
irreducible polynomial of degree m over GF(2m) [4]. 
 
2.4 GF(2m) arithmetic for polynomial basis  
 
The following arithmetic operations are defined on the 
elements of GF(2m), using a polynomial basis 
representation with reduction polynomial f(x). 
 
 Addition: 

 
If ( )  and  b ( ) are 

elements of GF(2

=a 1210 ..... −maaaa =
= c

1210 ... −mbbbb
...( 210= mccccm), then  )1−+ ba

where  ci = (ai + bi ) mod 2 
 
 Multiplication:  

 
If ( )  and  ( b ) are 
elements of GF(2

=a 1210 ..... −maaaa =b 1210 ... −mbbb
m), then a*b=r=(rm-1rm-2…r1r0) where 

the polynomial r(x) is the remainder when the 
polynomial a(x)*b(x) is divided by f(x) [4]. 
 
 Inversion:  

 

If a ≠ 0 and a ∈ GF(2m), the inverse of a, is the unique 
element c ∈ GF(2m) for which a•c = 1 (c = a-1). 

 
3.  ALGORITHMS FOR GAUSSIAN NORMAL 

BASIS MULTIPLICATION OVER GF(2m)  
  
In [5], NIST presents a conventional algorithm for the 
gaussian normal basis multiplication over GF(2m), which 
is shown in Figure 1. In this case, an algorithm is used to 
generate the J(k) subindexes for the F(U,V) array, which 
is shown in Figure 2.  

In [7], Lopez presents a modified conventional 
algorithm for the gaussian normal basis multiplication 
over GF(2m), which is implemented in software and 
shown in Figure 3, and the values generated  for the 
function p1 are shown in Figure 4.  
The parameters recommended by NIST for GF(2163) are: 
  m   =   163,  number of bits 
  T    =   4,      number recommended by NIST for 
                         GF(2163) 
  p    =  653,       prime number p = Tm + 1 
  U   =  149,    number that satisfies the relation 
  U4 mod p = 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONVENTIONAL ALGORITHM:  
GNB MULTIPLICATION OVER GF(2m)  
 

 Input: a, b ∈ GF(2m)      Output: c = a.b ∈ GF(2m)  
 

1. U  ←   a = (a0, a1, ...am-1) 
2. V  ←   b = (b0, b1, ...bm-1) 
3. For k = 0 to m-1 do 
4.      c(k)  = F(U,V) 
5.      U   = left rotation of U 
6.      V   = left rotation of V 
7. End 
8. c ← = (c0, c1,... cm-1) = a.b 
where:   
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Figure 1: Conventional algorithm for the gaussian 
normal basis multiplication over GF(2m) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ALGORITHM: J(k) GENERATION FOR F(U, V) 
 

 Input: m, T, U, p      Output: J(1), J(2), …, .J(p-1)      
 

1. w  ←  1 
2. For j=0 to T-1 do  
3.        n   ← w 
4.            For i=0 to m-1 do  
5.            j(n)  ←  i 
6.            n    ←  2n mod p 
7.            End 
8.        w  ←  UW mod p 
9. End 
Figure 2: J(k) generation  for F(U, V) 

Figure 3: Modified conventional algorithm for the 
gaussian normal basis multiplication over GF(2m) 

MODIFIED ALGORITHM:  
GNB MULTIPLICATION OVER GF(2m) 
Let A and B finite field elements in GF(2163) 
Input: A, B in GF(2m) 
Output: C = A.B 
1. T = B2 ( Rot_right(B,1) ) 
2. C = 0 
3. For i = m-1 to 0 do 
    3.1 C = C2 ( C = Rot_right(C,1)) 
    3.2 if ai = 1 then C = C xor mbeta(T)   
    3.3 T = T2 ( T = Rot_right (T,1)) 
    End 
4. Return C = A. B 
T(p1) = [0,   Tp1(1), Tp1(2), Tp1(3), ... ,Tp1(162)] 
T(p2) = [0,   Tp2(1), Tp2(2), Tp2(3), ... ,Tp2(162)] 
T(p3) = [T1, Tp3(1), Tp3(2), Tp3(3), ... ,Tp3(162)] 
T(p4) = [0,   Tp4(1), Tp4(2), Tp4(3), ... ,Tp4(162)] 
Then  
     mbeta(T) = T(p1) xor T(p2) xor T(p3) xor T(p4)  



 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Pi(j) generation  for p1 function 
 
In [3], Elia and Leone present an algorithm to design fast 
parallel multipliers , This work present the modified 
algorithm which consists of two steps which are shown 
in Figures 5 and 6. 
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Figure 5: Computation of tensor τ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Reduction of  tensor τ and Z 

FAST MULTIPLIER ALGORITHM: STEP 2 
REDUCTION 
 
Input: tensor τ, vector Z. 
Output: reduced tensor τ and modified vector Z. 
 

1. For i = 1, 2, …, m-1 
2.      For j = 0, 1, …, i-1 
3.         if gf(i,j) = gf(i,j) 
4.            Set gf(j,j)  = gf(j,j) + gf(i,j) 
5.            Set gf(i,i)  =  gf(i,i) + gf(i,j) 
6.            Set Zf(i,j) = (ai + aj)(bi + bj) 
7.            Set gf(j,j)  =  0    
8.              Set Zf(i,j) = 0  
9. For i = 0, 1, …, m2-2 
10.        if gi = 0 then continue 
11.        For j = i+1, …,m2 –1 do 
12.             if gi = gj then 
13.                 Set Zi = Zi + Zj 
14.                 Set gj  =  0    
15.                 Set Zj = 0 
16. For i = 0, 1, …, m2-1 
17.        if gi = 0 then continue 
18.        For j = 0, 1, …, m2-1 and i ≠  j do 
19.             if Hj <Hi then continue 
20.             else if gi is include in gj then 
21.                   Set gj = gj + gi 
22.                   Set Zi = Zi + Zj 
23. For j = 0, 1, …, m2-1 
24.         if gi = 0 or Hi < 3 then continue 
25.        For j = i+1, …,m2 –1 do 
26.          select superimposed columns 
27.           For j = i, i1, i2, … ik 
28.               Set to zero superimsed entries of gj 
29.               Add a new column to τ 
30.               Add a new entry to Z 
31. Output τ and Z 

The functions p1, p2, p3, p4 are: pi[j], j= 1,2,3,...162 
 
p1[] ={0,117,89,99,121,160,90,139,93,35,154,131,82,111,121,64, 
       55,136,72,9,7,45,43,32,153,84,33,76,135,56,114,31, 
       85,134,29,101,61,41,141,4,105,57,147,113,148,97,28,72, 
       80,81,13,130,153,11,144,75,106,137,16,112,27,98,58,68, 
       104,108,44,22,150,79,3,40,71,19,145,62,50,54,17,73, 
       94,132,159,154,25,30,115,65,118,152,25,133,34,74,92,140, 
       42,23,90,110,14,129,78,69,5,49,77,103,123,91,2,125, 
       148,142,161,158,1,145,151,143,100,84,67,37,3,87,120,15, 
       59,138,155,95,26,6,21,86,107,60,102,20,46,149,152,53, 
       2,71,48,106,40,38,146,119,127,157,116,51,128,100,36,122, 
       109,12} 

FAST MULTIPLIER ALGORITHM: STEP 1 
COMPUTATION OF TENSOR τ 
 

Input: a normal polynomial p(t) = c0+ c1t+…+cm-1 tm-1 

+cmtm over GF(2m). 
Output: associated tensor τ. 
1. Compute: 
    t= a0,0 + a0,1t + … + a0, m-1tm-1 
    t2= a1,0 + a1,1t + … + a1, m-1tm-1 
    t4= a2,0 + a2,1t + … + a2, m-1tm-1 
    … 

    = am-1,0 + am-1,1t + … + am-1, m-1t
12 −m

t m-1 
2. Set: 
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3. Compute:  
                       B = A-1 
4. Set:  
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5. Compute: 
                       D = ACB 
6. Set: 
                          E = DT 
7. Set:  
              [ ])1,1()2,2()1,1( ,...,,, −−= mmEEEEτ     
8. Output τ. 

 
 

4.  ALGORITHMS FOR POLYNOMIAL BASIS 
MULTIPLICATION OVER GF(2m)  

 
In [7], Hua Li and Chang N. Zhang present an 

algorithm to design a low complexity programmable 
cellular automata based versatile modular multiplier over 
GF(2163). 

This algorithm is shown in Figure 7. where 
C(x)=A(x)B(x)mod P(x) can be written as follow: 

 
C(x)=[(…((0+am-1B(x))x+am-2B(x))x+…+a1B(x))x 

+a0B(x)] mod P(x) 
 



ALGORITHM: 
POLYNOMIAL BASIS MULTIPLICATION OVER 
GF(2m) 
 

1. C-1(X) = 0 
2. for I=0 to m-1 do 
              Ci(x)=[ Ci-1(x)x + am-1-iB/(x)] mod P(x) 
 
where:   

∑
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Figure 7: Algorithm for Polynomial basis multiplication  
 

5.  HARDWARE ARCHITECTURES FOR GF(2163) 
MULTIPLIER 

 
In this section are presented the hardware 

architectures for gaussian normal basis and polynomial 
basis multiplication over GF(2163). In this case, 
conventional and modified algorithms for the gaussian 
normal basis multiplication and polynomial 
multiplication over GF(2163) and fast parallel multiplier 
algorithm over GF(297) are implemented. 
 

5.1. Conventional algorithm based multipliers 
 

In order to achieve a good performance for hardware 
multipliers based on the conventional algorithm [2], 
several F(U,V) arrays can be used, which allow to 
speedup the multiplication. The hardware architecture 

for the gaussian normal basis multiplier based on using 4 
F(U,V) arrays is shown in Figure 7.  

In this architecture, the F(U,V) functional block 
allows to generate the subindexes that determine the 
order of combination of each bit of the two input data of 
the multiplier and it is implemented using XOR and 
AND functions. In this case, the F(U,V) array is 
designed using a combinational circuit, which is 
implemented using the following equation: 
 

C0  =  ( U0 V1  )  ⊕  ( U1 V0 )  ⊕  ( U1V117 ) ⊕ ( U1V13 ) ⊕ 
          (U102V110 ) ⊕............ 
          ( U97 V149 ) ⊕ (U97 V42 ) ⊕ .......... .................. 
          ( U99 V115 ) ⊕ ( U99 V4 )  ⊕  ( U99 V58 ) ⊕ ( U99V90 ) 
 

The barrel shifter functional blocks allow to rotate and 
shift the input data U and V for the multiplier, and the 
serial-in/parallel-out register allows to storage the bit Ci, 
which is generated from the F(U,V) array, thus, this 
register stores the product C = A.B. The control unit is 
implemented using a FSM, which allows to control the 
I/O registers, generate the control sequences and 
initialize the multiplication. 
 

5.2. Modified conventional algorithm based 
multipliers 

 

The hardware architecture for the gaussian normal 
basis multiplier based on modified conventional 
algorithm (presented in [5]) is shown in Figure 8. 
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Figure 7: Hardware architecture for GF(2163) multiplier based on conventional algorithm using 4 F(U, V) 
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Figure 8: Hardware architecture for GF(2163) multiplier based on modified conventional algorithm 
 
 

5.3. Fast parallel multiplier  
The hardware architecture for the modified fast 

parallel multiplier algorithm for GF(297) is presented in 
Figure 9. In this case, the hardware architecture uses a 
new array which uses XOR and AND functions. By the 
moment, simulations results are obtained for the finite 
field multiplication over GF(2101), however for the case 
GF(2163), the Quartus II presents problems of fitting.  

 
5.4. Polynomial basis multiplier  

 
The architecture of a PCA cell is shown in Figure 10. 

Where Cm is configured as the coefficients of B(x) and 
Cr is configured as the coefficients of P(x), Xs is 
configured as coefficients of A(x), Xl and Xs are partial 
results of neighborhood PCA.  

This work present an architecture modular multiplier 
based on PCA (Programmable Cellular Automata) and 
the polynomial basis representation, the basic 

architecture of the multiplier is suitable for both parallel 
and serial multiplier. 

 
 
 
 
 
 
 
 
 
 

 MUX 4:1
Xl
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Figure 10: PCA cell  
 

An array of PCA cells determine the architecture of 
serial multiplier GF(24) shown in Figure 11 or parallel 
multiplier shown in Figure 12. 

 
 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Serial multiplier in GF(24)  
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Figure 12: Parallel multiplier in GF(24) 



6.  SIMULATION RESULTS 
 

In order to verify the performance of the multipliers, 
several simulations were carried out. The simulation 
results for hardware implementations are shown in 
Tables 1, 2, 3 and 4. The multipliers are implemented on 
the FPGA EP2S60F1020C3, and the simulation and 
synthesis were carried out using Quartus II version 4.0. 

 
 

F(U,V) Logic  
elements 

FMAX(MHz) Tend (µs) using 
CLK = 10ns 

1 974 128.34 1.704 
4 2760 123.24 0.500 
8 5144 113.00 0.300 

16 9912 108.44 0.200 
 

Table 1: Simulation results for the conventional 
algorithm based multiplier 

 
mbeta(T) Logic  

elements 
FMAX(MHz) T (µs)  

CLK = 10ns 
1 1249 178.13 1.67 
4 1295 232.4 0.532 

 
Table 2: Simulation results for the modified 

conventional algorithm based multiplier 
 

As could be observed from Tables 1 and 2, the 
multipliers designed present a good performance using 
small area, which is very suitable for elliptic curve 

cryptoprocessor design. In Table 3 are presented the 
simulation results for the conventional algorithm based 
multiplier using pipeline architecture. In table 4 are 
presented the simulation results for polynomial 
multipliers. 
 

F(U,V) 
Pipeline 2 

Logic  
elements 

FMAX(MHz) Tend (µs) using 
CLK = 10ns 

1 1292 276.55 1.72 
4 3209 292.74 0.495 
8 6671 189.57 0.296 

16 12973 163.21 0.196 
 

F(U,V) 
Pipeline 4 

Logic  
elements 

FMAX(MHz) Tend (µs) using 
CLK = 10ns 

1 1269 386.12 1.74 
4 3437 284.98 0.517 
8 6465 220.51 0.316 

16 12575 184.09 0.217 
 

Table 3: Simulation results for the conventional 
algorithm based multiplier using pipeline architecture 

 
Multiplier Logic  

elements 
FMAX(MHz) T (µs)  

CLK = 10ns 
Serial 163 215.8 1.67 

Parallel 26569 4.6 0.02 
 

Table 4: Simulation results for the serial and parallel 
multiplier 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Hardware architecture for GF(297) multiplier based on parallel multiplier algorithm 
 



7.  CONCLUSIONS AND FUTURE WORK 
 

This article presents the design of efficient hardware 
implementations for the gaussian normal and polynomial 
basis multiplication over GF(2163). In this case, the 
multipliers are designed using conventional, modified 
and parallel multiplier algorithms for the multiplication 
over GF(2m). 

The multipliers present a good speed/area ratio, 
which is very suitable for elliptic curve cryptoprocessor 
design, this allows that elliptic curve based 
cryptosystems can support applications economically 
feasible such as smart cards and cellular telephones. 

The multipliers were simulated using Quartus II of 
Altera and synthesized on the FPGA EP2S60F1020C3. 

The future work, will be oriented to design 
hardware multipliers for the gaussian normal basis 
multiplication over GF(2233), design a fast parallel 
multiplier over GF(2163) and to implement new 
multiplication algorithms. 
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