
 DESIGN OF GAUSSIAN NORMAL AND POLYNOMIAL BASIS MULTIPLIERS
OVER GF(2163)

Vladimir Trujillo-Olaya, Jaime Velasco-Medina, Julio C. López-Hernández*

Grupo de Bionanoelectrónica, Escuela EIEE, Universidad del Valle, Cali, Colombia

* Instituto de computacao, UNICAMP, Campinas, Brasil
E-mail: vlatruo@univalle.edu.co, jvelasco@univalle.edu.co, jlopez@ic.unicamp.br

ABSTRACT

This article address efficient hardware implementations for multiplication over GF(2163). Hardware implementations of
multiplication algorithms are suitable for elliptic curve cryptoprocessor designs, which allow that elliptic curve based
cryptosystems implemented in hardware provide more physical security and higher speed than software implementations.
In this case, the multipliers were designed using conventional, modified and fast multiplication algorithms, the synthesis
and simulation were carried out using Quartus II v.5.0 of Altera, and the designs were synthesized on the Stratix II
EP2S60F1020C3. The simulation results show that the multipliers designed present a very good performance using small
area.

DESIGN OF GAUSSIAN NORMAL AND POLYNOMIAL BASIS MULTIPLIERS
OVER GF(2163)

Vladimir Trujillo-Olaya, Jaime Velasco-Medina, Julio C. López-Hernández*

Grupo de Bionanoelectrónica, Escuela EIEE, Universidad del Valle, Cali, Colombia

* Instituto de computacao, UNICAMP, Campinas, Brasil
E-mail: vlatruo@univalle.edu.co, jvelasco@univalle.edu.co, jlopez@ic.unicamp.br

ABSTRACT

This article address efficient hardware implementations
for multiplication over GF(2163). Hardware
implementations of multiplication algorithms are
suitable for elliptic curve cryptoprocessor designs, which
allow that elliptic curve based cryptosystems
implemented in hardware provide more physical security
and higher speed than software implementations. In this
case, the multipliers were designed using conventional,
modified and fast multiplication algorithms, the
synthesis and simulation were carried out using Quartus
II v.5.0 of Altera, and the designs were synthesized on
the Stratix II EP2S60F1020C3. The simulation results
show that the multipliers designed present a very good
performance using small area.

1. INTRODUCTION

In order to protect or exchange confidential data, the
cryptography plays an important role in the security of
the information. Therefore, it is necessary to implement
efficient cryptosystems, which can support applications
economically feasible. In this context, public key
cryptography based on elliptic curves is widely used
because it presents higher security per key bit, and their
two main applications are the private key exchange and
the digital signature. Additionally, the Elliptic Curve
Cryptosystems (ECC) can be used in applications where
the computation resources are limited such as smart
cards and cellular telephones. The ECC systems are
included in the NIST and ANSI standards, and the
principal advantage over other systems of public key like
RSA is the size of the parameters, which are very small,
however the ECC systems provide the same level of
computational security.

On the other hand, the algorithms used for elliptic
curve cryptosystems are divided hierarchically into three
levels. The arithmetic level, the group operation level
and the encryption level. Therefore, in order to achieve
efficient hardware implementations it is evident to reach
the best algorithm optimization for each level. However,

it is import to mention that the most expensive operation
applied in elliptic curve based cryptosystems is the
“scalar multiplication” of a large natural number with a
point on an elliptic curve [1]. In this case, the
performance of an elliptic curve cryptoprocessor
depends on the multiplication over GF(2m). Therefore,
the multiplier is the most important functional block for
elliptic curve cryptoprocessor design.

In the literature are presented few hardware designs
for the gaussian normal basis multiplication over
GF(2m). In [2], V. Trujillo, J. Velasco and J. C. López
present the hardware design for the Gaussian normal
multiplier over GF(2163). In [3], Elia and Leone present a
theoretic study about a general algorithm to design fast
parallel multipliers in any basis over GF(2m). The
algorithm has been applied to gaussian normal basis
multiplication over small galois field (GF(273)).
However, for m > 73 is not considered. Additionally, the
total number of gates (XOR and AND) is not guaranteed
to be the minimum. In this case, the algorithm is aimed
at minimizing the number of XOR gates. In [4], Hua Li
and Chang N. Zhang present an algorithm to design a
low complexity programmable cellular automata based
versatile modular multiplier over GF(2m).

This work address efficient hardware
implementations for gaussian normal basis and
polynomial basis multiplication over GF(2163). In this
case, the multipliers designed present a good speed/area
ratio, which is very suitable for elliptic curve
cryptoprocessor design. Therefore, elliptic curve based
cryptosystems can be used in applications that require
small area, good speed and low consumption power,
such as smart cards and cellular telephones.
 This article is organized as follows. Initially,
sections 2, 3 and 4 present the basic concepts on GF(2m)
arithmetic and algorithms for gaussian normal basis and
polynomial basis multiplication over GF(2m). In section
5, the hardware architectures for the multipliers are
described. In section 6, the simulation results are
presented. Finally, section 7 presents the conclusions and
the future work.

2. GF(2m) ARITHMETIC

2.1 Concepts on gaussian normal basis

Normal Basis representations of an element in the
finite field GF(2163) have the computational advantage
that squaring an element can be done very efficiently.
However multiplying distinct elements, can be
cumbersome in general for this reason, ANSI X9.62
specifies that Gaussian Normal Basis be used, for which
multiplication is both simpler and more efficient [5].

A normal basis for GF(2m) is as follows:

 { , , , ..., }, where β ∈ GF(2β 2β
22β

12 −m

β m)
where, any element α ∈ GF(2m) can be written as
follows:

 where a .
i

m

i
iaa 2

1

0

β∑
−

=

= { }1,0∈i

The type T of a Gaussian Normal Basis (GNB) is a
positive integer, measuring the complexity of the
multiplication operation with respect to that basis.
Generally, the type T of smaller value allows to make a
more efficient multiplication. For a given m and T, the
field GF(2m) can have at most one GNB of type T.

A GNB exists whenever m is not divisible by 8. Let
m be a positive integer and let T be a positive integer.
Then the type T of a GNB for GF(2m) exists if and only
if is prime. 1+=Tmp

If { , , , ..., } is a Gaussian
Normal Basis in the finite field GF(2

β

ia β

2

2β

1−ma

22β
12 −m

β

{ }1,0

m), then the element

 is represented by the binary string

() where

i
m

i

a 2
1

0
∑
−

=

=

10 aaa ∈ia
In this case, the multiplicative identity element is

represented by the bit string of all 1’s. While the additive
identity element is represented by the bit string of all 0’s.

An important result for the arithmetic of the
Gaussian Normal Basis is the Fermat’s Theorem. For all
β ∈ GF(2m) so that:

This theorem is important to carry out the squaring of an
element in the finite field GF(2m).

2.2 GF(2m) arithmetic for gaussian normal basis

The following arithmetic operations are defined on the
elements of GF(2m) when using a GNB of type T:

 Addition:

If () and b () are

elements of GF(2

=a 1210 −maaaa =
= c

1210 ... −mbbbb
...(210= mccccm), then)1−+ ba

where ci = (ai + bi) mod 2.

 Squaring:

Let a () ∈ GF(2= 1210 −maaaa m), then

2
2

1

0

2

= ∑

−

=

i
m

i
iaa β

= due to Fermat’s

Theorem; , then

12
1

0

+∑
−

=

i
m

i
ia β

β
m2

i
m

i
ia 2

1

0
1β∑

−

=
−=

β=

=2a () 22101 −− mm aaaaa
 In this case, squaring is a simple rotation of the
vector representation.

 Multiplication:

Let and let u ∈ GF(p) be an element of
order T. Define the sequence J(1), J(2), ..., J(p-1) by:

1+= Tmp

() ipuJ ji =mod2 , for i from 0 until m-1 and j from 0 until
T-1.

If (a) and

(b) are elements of GF(2

=a

10 bb
1210 −maaa

12 ... −mb=b m), then

)...(1210 −==• mcccccba

∑
−

=
−+ •=

2

1
)()1(

p

k
kpJkJi bac

, where

 Inversion:

If a ≠ 0 and a ∈ GF(2m), the inverse of a, is the unique
element c ∈ GF(2m) for which a•c = 1 (c = a-1).

The algorithm used for inversion is based on the
identity: ββ =

m2

()212221 1−−− −
==

mm
aaa

In [6], Itoh and Tsujii proposed a method that

minimizes the number of multiplications to calculate the
inversion, which is based on the following identities:

=−− 12 1m
a

 () m evenaa

m oddaa
m

mmm

)(
212

12212

2

2
1

2
1

2
1

−

−−

−

−−−

•

•

2.3 Concepts on polynomial basis

This basis is also known as the canonical or
standard basis, is defined as the set {1, α, α2,…,αm-1}
where α is a root of the irreducible polynomial f(x).
Where f(x)=xm+fm-1xm-1+…f2x2+f1x+f0 (fi ∈{0,1}) is an
irreducible polynomial of degree m over GF(2m) [4].

2.4 GF(2m) arithmetic for polynomial basis

The following arithmetic operations are defined on the
elements of GF(2m), using a polynomial basis
representation with reduction polynomial f(x).

 Addition:

If () and b () are

elements of GF(2

=a 1210 −maaaa =
= c

1210 ... −mbbbb
...(210= mccccm), then)1−+ ba

where ci = (ai + bi) mod 2

 Multiplication:

If () and (b) are
elements of GF(2

=a 1210 −maaaa =b 1210 ... −mbbb
m), then a*b=r=(rm-1rm-2…r1r0) where

the polynomial r(x) is the remainder when the
polynomial a(x)*b(x) is divided by f(x) [4].

 Inversion:

If a ≠ 0 and a ∈ GF(2m), the inverse of a, is the unique
element c ∈ GF(2m) for which a•c = 1 (c = a-1).

3. ALGORITHMS FOR GAUSSIAN NORMAL

BASIS MULTIPLICATION OVER GF(2m)

In [5], NIST presents a conventional algorithm for the
gaussian normal basis multiplication over GF(2m), which
is shown in Figure 1. In this case, an algorithm is used to
generate the J(k) subindexes for the F(U,V) array, which
is shown in Figure 2.

In [7], Lopez presents a modified conventional
algorithm for the gaussian normal basis multiplication
over GF(2m), which is implemented in software and
shown in Figure 3, and the values generated for the
function p1 are shown in Figure 4.
The parameters recommended by NIST for GF(2163) are:
 m = 163, number of bits
 T = 4, number recommended by NIST for
 GF(2163)
 p = 653, prime number p = Tm + 1
 U = 149, number that satisfies the relation
 U4 mod p = 1

CONVENTIONAL ALGORITHM:
GNB MULTIPLICATION OVER GF(2m)

 Input: a, b ∈ GF(2m) Output: c = a.b ∈ GF(2m)

1. U ← a = (a0, a1, ...am-1)
2. V ← b = (b0, b1, ...bm-1)
3. For k = 0 to m-1 do
4. c(k) = F(U,V)
5. U = left rotation of U
6. V = left rotation of V
7. End
8. c ← = (c0, c1,... cm-1) = a.b
where:

() (kJ

p

k
kJ VUVUF ∑

−

=
+=

2

1
1),()

Figure 1: Conventional algorithm for the gaussian
normal basis multiplication over GF(2m)

ALGORITHM: J(k) GENERATION FOR F(U, V)

 Input: m, T, U, p Output: J(1), J(2), …, .J(p-1)

1. w ← 1
2. For j=0 to T-1 do
3. n ← w
4. For i=0 to m-1 do
5. j(n) ← i
6. n ← 2n mod p
7. End
8. w ← UW mod p
9. End
Figure 2: J(k) generation for F(U, V)

Figure 3: Modified conventional algorithm for the
gaussian normal basis multiplication over GF(2m)

MODIFIED ALGORITHM:
GNB MULTIPLICATION OVER GF(2m)
Let A and B finite field elements in GF(2163)
Input: A, B in GF(2m)
Output: C = A.B
1. T = B2 (Rot_right(B,1))
2. C = 0
3. For i = m-1 to 0 do
 3.1 C = C2 (C = Rot_right(C,1))
 3.2 if ai = 1 then C = C xor mbeta(T)
 3.3 T = T2 (T = Rot_right (T,1))
 End
4. Return C = A. B
T(p1) = [0, Tp1(1), Tp1(2), Tp1(3), ... ,Tp1(162)]
T(p2) = [0, Tp2(1), Tp2(2), Tp2(3), ... ,Tp2(162)]
T(p3) = [T1, Tp3(1), Tp3(2), Tp3(3), ... ,Tp3(162)]
T(p4) = [0, Tp4(1), Tp4(2), Tp4(3), ... ,Tp4(162)]
Then
 mbeta(T) = T(p1) xor T(p2) xor T(p3) xor T(p4)

Figure 4: Pi(j) generation for p1 function

In [3], Elia and Leone present an algorithm to design fast
parallel multipliers , This work present the modified
algorithm which consists of two steps which are shown
in Figures 5 and 6.

 a

Figure 5: Computation of tensor τ

Figure 6: Reduction of tensor τ and Z

FAST MULTIPLIER ALGORITHM: STEP 2
REDUCTION

Input: tensor τ, vector Z.
Output: reduced tensor τ and modified vector Z.

1. For i = 1, 2, …, m-1
2. For j = 0, 1, …, i-1
3. if gf(i,j) = gf(i,j)
4. Set gf(j,j) = gf(j,j) + gf(i,j)
5. Set gf(i,i) = gf(i,i) + gf(i,j)
6. Set Zf(i,j) = (ai + aj)(bi + bj)
7. Set gf(j,j) = 0
8. Set Zf(i,j) = 0
9. For i = 0, 1, …, m2-2
10. if gi = 0 then continue
11. For j = i+1, …,m2 –1 do
12. if gi = gj then
13. Set Zi = Zi + Zj
14. Set gj = 0
15. Set Zj = 0
16. For i = 0, 1, …, m2-1
17. if gi = 0 then continue
18. For j = 0, 1, …, m2-1 and i ≠ j do
19. if Hj <Hi then continue
20. else if gi is include in gj then
21. Set gj = gj + gi
22. Set Zi = Zi + Zj
23. For j = 0, 1, …, m2-1
24. if gi = 0 or Hi < 3 then continue
25. For j = i+1, …,m2 –1 do
26. select superimposed columns
27. For j = i, i1, i2, … ik
28. Set to zero superimsed entries of gj
29. Add a new column to τ
30. Add a new entry to Z
31. Output τ and Z

The functions p1, p2, p3, p4 are: pi[j], j= 1,2,3,...162

p1[] ={0,117,89,99,121,160,90,139,93,35,154,131,82,111,121,64,
 55,136,72,9,7,45,43,32,153,84,33,76,135,56,114,31,
 85,134,29,101,61,41,141,4,105,57,147,113,148,97,28,72,
 80,81,13,130,153,11,144,75,106,137,16,112,27,98,58,68,
 104,108,44,22,150,79,3,40,71,19,145,62,50,54,17,73,
 94,132,159,154,25,30,115,65,118,152,25,133,34,74,92,140,
 42,23,90,110,14,129,78,69,5,49,77,103,123,91,2,125,
 148,142,161,158,1,145,151,143,100,84,67,37,3,87,120,15,
 59,138,155,95,26,6,21,86,107,60,102,20,46,149,152,53,
 2,71,48,106,40,38,146,119,127,157,116,51,128,100,36,122,
 109,12}

FAST MULTIPLIER ALGORITHM: STEP 1
COMPUTATION OF TENSOR τ

Input: a normal polynomial p(t) = c0+ c1t+…+cm-1 tm-1

+cmtm over GF(2m).
Output: associated tensor τ.
1. Compute:
 t= a0,0 + a0,1t + … + a0, m-1tm-1
 t2= a1,0 + a1,1t + … + a1, m-1tm-1
 t4= a2,0 + a2,1t + … + a2, m-1tm-1
 …

 = am-1,0 + am-1,1t + … + am-1, m-1t
12 −m

t m-1
2. Set:

=

−−−−

−

−

1,11,10,1

1,11,10,1

1,01,00,0

...
............

...

...

mmmm

m

m

aaa

aa
aaa

A

3. Compute:
 B = A-1
4. Set:

=

−1210 ...
1...000
...............
0...100
0...010

mcccc

C

5. Compute:
 D = ACB
6. Set:
 E = DT
7. Set:
 [])1,1()2,2()1,1(,...,,, −−= mmEEEEτ
8. Output τ.

4. ALGORITHMS FOR POLYNOMIAL BASIS
MULTIPLICATION OVER GF(2m)

In [7], Hua Li and Chang N. Zhang present an

algorithm to design a low complexity programmable
cellular automata based versatile modular multiplier over
GF(2163).

This algorithm is shown in Figure 7. where
C(x)=A(x)B(x)mod P(x) can be written as follow:

C(x)=[(…((0+am-1B(x))x+am-2B(x))x+…+a1B(x))x

+a0B(x)] mod P(x)

ALGORITHM:
POLYNOMIAL BASIS MULTIPLICATION OVER
GF(2m)

1. C-1(X) = 0
2. for I=0 to m-1 do
 Ci(x)=[Ci-1(x)x + am-1-iB/(x)] mod P(x)

where:

∑
−

=

=
1

0
*)(

m

j

ji
j

i xcxC

Figure 7: Algorithm for Polynomial basis multiplication

5. HARDWARE ARCHITECTURES FOR GF(2163)
MULTIPLIER

In this section are presented the hardware

architectures for gaussian normal basis and polynomial
basis multiplication over GF(2163). In this case,
conventional and modified algorithms for the gaussian
normal basis multiplication and polynomial
multiplication over GF(2163) and fast parallel multiplier
algorithm over GF(297) are implemented.

5.1. Conventional algorithm based multipliers

In order to achieve a good performance for hardware
multipliers based on the conventional algorithm [2],
several F(U,V) arrays can be used, which allow to
speedup the multiplication. The hardware architecture

for the gaussian normal basis multiplier based on using 4
F(U,V) arrays is shown in Figure 7.

In this architecture, the F(U,V) functional block
allows to generate the subindexes that determine the
order of combination of each bit of the two input data of
the multiplier and it is implemented using XOR and
AND functions. In this case, the F(U,V) array is
designed using a combinational circuit, which is
implemented using the following equation:

C0 = (U0 V1) ⊕ (U1 V0) ⊕ (U1V117) ⊕ (U1V13) ⊕
 (U102V110) ⊕............
 (U97 V149) ⊕ (U97 V42) ⊕
 (U99 V115) ⊕ (U99 V4) ⊕ (U99 V58) ⊕ (U99V90)

The barrel shifter functional blocks allow to rotate and
shift the input data U and V for the multiplier, and the
serial-in/parallel-out register allows to storage the bit Ci,
which is generated from the F(U,V) array, thus, this
register stores the product C = A.B. The control unit is
implemented using a FSM, which allows to control the
I/O registers, generate the control sequences and
initialize the multiplication.

5.2. Modified conventional algorithm based
multipliers

The hardware architecture for the gaussian normal
basis multiplier based on modified conventional
algorithm (presented in [5]) is shown in Figure 8.

 S

O

CLR

LD

A B

RST
CLK

163 163

LD LD
CLR CLR
CLK CLK

163 163

1 1 1 1

BARREL
SHIFTER

BARREL
SHIFTER

ERIAL IN, PARALLEL
UT SHIFT REGISTER

CONTROL
UNIT
(FSM)

��������������������
��������������������
��������������������

F(A,B)
ARRAY

��������������������
��������������������
��������������������

F(A,B)
ARRAY

��������������������
��������������������
��������������������

F(A,B)
ARRAY

��������������������
��������������������
��������������������

F(A,B)
ARRAY

C=A*B

163

LD
CLR
CLK

Figure 7: Hardware architecture for GF(2163) multiplier based on conventional algorithm using 4 F(U, V)

 BA

BARREL
SHIFTER 3

BARREL
SHIFTER 1

mBeta mBeta mBeta mBeta

BARREL
SHIFTER

CONTROL
UNIT

(FSM)

MUX 21

REGISTER

BARREL
SHIFTER

RREL
SHIFTER 2

RST

CLK

LD

CLR

LD

CLR

LD

CLR

A B

163 163

163 163 163 163

SALIDA

Figure 8: Hardware architecture for GF(2163) multiplier based on modified conventional algorithm

5.3. Fast parallel multiplier
The hardware architecture for the modified fast

parallel multiplier algorithm for GF(297) is presented in
Figure 9. In this case, the hardware architecture uses a
new array which uses XOR and AND functions. By the
moment, simulations results are obtained for the finite
field multiplication over GF(2101), however for the case
GF(2163), the Quartus II presents problems of fitting.

5.4. Polynomial basis multiplier

The architecture of a PCA cell is shown in Figure 10.

Where Cm is configured as the coefficients of B(x) and
Cr is configured as the coefficients of P(x), Xs is
configured as coefficients of A(x), Xl and Xs are partial
results of neighborhood PCA.

This work present an architecture modular multiplier
based on PCA (Programmable Cellular Automata) and
the polynomial basis representation, the basic

architecture of the multiplier is suitable for both parallel
and serial multiplier.

 MUX 4:1
Xl

Xr

Xs

Cm
Cr

S

Figure 10: PCA cell

An array of PCA cells determine the architecture of
serial multiplier GF(24) shown in Figure 11 or parallel
multiplier shown in Figure 12.

Figure 11: Serial multiplier in GF(24)
B2 P2B1 P1B0 P0

Xl Xs Xr
Cm
Cr
 Xs

D Q

 clk

D Q

 clk

D Q

 clk

D Q

 clk

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

0
A

CLK

C0 C1 C2 C3

B3 P3

Xl Xs Xr
Cm
Cr
 Xs

D Q

 clk

D Q

 clk

D Q

 clk

D Q

 clk

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

0
A3

CLK

C0 C1 C2 C3

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

0
A2

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

0
A1

B2 P2B1 P1B0 P0

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

Xl Xs Xr
Cm
Cr
 Xs

0
A0

B3 P3

Figure 12: Parallel multiplier in GF(24)

6. SIMULATION RESULTS

In order to verify the performance of the multipliers,
several simulations were carried out. The simulation
results for hardware implementations are shown in
Tables 1, 2, 3 and 4. The multipliers are implemented on
the FPGA EP2S60F1020C3, and the simulation and
synthesis were carried out using Quartus II version 4.0.

F(U,V) Logic
elements

FMAX(MHz) Tend (µs) using
CLK = 10ns

1 974 128.34 1.704
4 2760 123.24 0.500
8 5144 113.00 0.300

16 9912 108.44 0.200

Table 1: Simulation results for the conventional
algorithm based multiplier

mbeta(T) Logic

elements
FMAX(MHz) T (µs)

CLK = 10ns
1 1249 178.13 1.67
4 1295 232.4 0.532

Table 2: Simulation results for the modified

conventional algorithm based multiplier

As could be observed from Tables 1 and 2, the
multipliers designed present a good performance using
small area, which is very suitable for elliptic curve

cryptoprocessor design. In Table 3 are presented the
simulation results for the conventional algorithm based
multiplier using pipeline architecture. In table 4 are
presented the simulation results for polynomial
multipliers.

F(U,V)
Pipeline 2

Logic
elements

FMAX(MHz) Tend (µs) using
CLK = 10ns

1 1292 276.55 1.72
4 3209 292.74 0.495
8 6671 189.57 0.296

16 12973 163.21 0.196

F(U,V)
Pipeline 4

Logic
elements

FMAX(MHz) Tend (µs) using
CLK = 10ns

1 1269 386.12 1.74
4 3437 284.98 0.517
8 6465 220.51 0.316

16 12575 184.09 0.217

Table 3: Simulation results for the conventional
algorithm based multiplier using pipeline architecture

Multiplier Logic

elements
FMAX(MHz) T (µs)

CLK = 10ns
Serial 163 215.8 1.67

Parallel 26569 4.6 0.02

Table 4: Simulation results for the serial and parallel
multiplier

Figure 9: Hardware architecture for GF(297) multiplier based on parallel multiplier algorithm

7. CONCLUSIONS AND FUTURE WORK

This article presents the design of efficient hardware
implementations for the gaussian normal and polynomial
basis multiplication over GF(2163). In this case, the
multipliers are designed using conventional, modified
and parallel multiplier algorithms for the multiplication
over GF(2m).

The multipliers present a good speed/area ratio,
which is very suitable for elliptic curve cryptoprocessor
design, this allows that elliptic curve based
cryptosystems can support applications economically
feasible such as smart cards and cellular telephones.

The multipliers were simulated using Quartus II of
Altera and synthesized on the FPGA EP2S60F1020C3.

The future work, will be oriented to design
hardware multipliers for the gaussian normal basis
multiplication over GF(2233), design a fast parallel
multiplier over GF(2163) and to implement new
multiplication algorithms.

8. ACKNOWLEDGMENT

This work was sponsored by Altera Corporation
through the University Program. The authors give a
special thanks to Mrs Ralene Marcoccia of Altera
Corporation.

8. BIBLIOGRAPHY

 [1] M. Jung, “FPGA Based Implementation Of An Elliptic Curve

Coprocessor Utilizing Synthesizable VHDL code”, Darmstadt
University of Technology. Available at http://
www.vlsi.informatik.tu-darmstadt.de/staff/mjung/publications/
comprehensive.pdf

[2] V. Trujillo, J. Velasco and J. López, “Multiplicador en el cuerpo
finito GF(2163) usando bases normales gaussianas”, IX Workshop
Ibercip Cuba 2003. www.iberchip.org/IX/Pages/Sesion11c.html

[3] M. Elia and M. Leone, “A basis-independent algorithm to design
fast parallel multipliers over GF(2m)”,
http://doi.ieeecomputersociety.org/10.1109/ITCC.2004.1286712,
2004.

[4] H. Li and C. N. Zhang, “Efficient Cellular Automata Based
Versatile Multiplier for GF(2m)”, Journal of information Science
and Engineering 18.479-488. 2002.

[5] National Institute of Standards and Technology, “Digital
Signature Standard”, FIPS Publication 186-2, February 2000.
Available at http://csrc.nist.gov/fips.

[6] T. Itoh and S. Tsujii, “A fast algorithm for computing
multiplicative inverses in GF(2m) using normal bases”,
Information and Computation, 1988.

[7] J. Lopez Hernández, “Modified conventional algorithm for
gaussian normal basis multiplication over GF(2m)”, internal
report.

