

Automatic Synthesis of Non-Conventional Flip-Flops

Duarte Lopes de Oliveira Henrique de Alencar Aguiar
Departamento de Eletrônica Aplicada do Instituto Tecnológico de Aeronáutica

duarte@ita.br haaguiar@uol.com.br
Praça Marechal Eduardo Gomes, 50 - CEP 12228-900 - São José dos Campos - São Paulo - Brazil

ABSTRACT

The Flip-Flop (FF) memory element has a significant
contribution in synchronous digital systems clock rate
calculation. Due to the need of better the performance
of a system digital, several techniques have been used
for this purpose. An interesting technique is to use
different types of (non-conventional) FFs resulting in a
improvement in the performance of the digital system
clock rate. In this article we propose a very practical
method of automatic synthesis of the different types
FFs. Our method steps eliminate of states minimization
and state assignment. It synthesizes non-conventional
FFs that will contribute in the increase of the system
clock rate.

Keywords: flip-flops types, asynchronous logic,
hazards, critical race and automatic synthesis.

1. INTRODUCTION
The increase synchronous digital systems applications
and the need of better performance, many techniques
had been proposed to Finite State Synchronous
Machines (MEFS) and Datapath [1,2] synthesis. These
techniques are related to low power [23,24], testability
[21], high speed [5] and other logics [20]. In MEFS and
Datapath synthesis the memory element Flip-Flop (FF)
has a significant participation implementing many
target architectures [1,2]. Targeting the performance
increase of these architectures, new synthesis
techniques, use each time more different types of FFs.
Beyond conventional FFs (Single-Edge-Triggered
(SET) D, T, JK and RS), there is a demand for FFs
types like fuzzy [20], self-checking [15], Q [22], scan
[16], self-timed [27], Bist [21], Double-Edge-Triggered
[4,25], etc. For example, the usage of Double-Edge-
Triggered FFs is an interesting alternative to power
reducing and speed increasing [5]. Another way for
target architecture performance increase, reducing the
number of levels in critical path, so increasing clock

rates, is to join the excitation logic with its respective
FF [18]1. In this article the different FFs types are called
non-conventional FFs.

Many tools had been proposed to asynchronous circuit
synthesis, like: Petrify [27], Assassin [28], Minimalist
[29], 3D [6,7,8] and Miriã-GFM [14]. These tools can
synthesize many FFs types, but the performance might
be compromised because the synthesized FF must
operate correctly (hazard free) and be optimized (area
and setup, hold and propagation times). The tools
Petrify and Assassin use the State Transition Graph
(STG) specification, that is a Petri-Net interpreted
[17,26] and the Minimalist tool uses Burst Mode (BM)
specification, based in state diagrams [10]. The STG
and BM specifications are not the most appropriate to
specify the FF behavior, because cannot describe non-
monotonic level sensitive signals (LSS – FFs inputs) [7,
26]. The 3D tool uses the Extended Burst-Mode (XBM)
specification, that describes the FFs behavior, but the
performance (area and speed) of FF-3D, based in basic
gates, generated by the tool is inefficient [14]. The
Miriã-GFM tool uses Multi Burst Graph [14]
specification that is a XBM specification extension,
generates many FFs types with good performance when
compared to the FF-3D, but the LSS signals must
satisfy the fundamental mode.

Because of asynchronous project problems and its
performance, the synthesis of many FFs types is, in
most cases, full custom, made manually and in a craft
way [9,25]. In despite of these FFs normally having
great performance, the manual and craft synthesis can
be impracticable to most complex FFs types, what
happens to the Merging FF [3,4]. In despite of full
custom FFs have better performance, the FFs
synthesized by basic gates and latches (standard-cell

1 In this article we called the circuit to contain FF and
the excitation logic of the type merging FF.

technology) are interesting too, because of cost and
project time reducing. In [4] is presented a technique for
conventional FFs synthesis from latches and basic
gates, but the performance is impracticable (setup time
too long).

This articles proposes an automatic synthesis method to
all FFs types, use the Asynchronous State Transition
Graph (ASTG) specification that is a variant from GMR
specification that permits efficiently describing any FF.
The FFs are implemented in the target architecture
based in basic gates and RS latches, called Feedback
Set-Dominant (FSD-latch) that is a variant from
architecture used by Petrify tool [27], or in full-custom
target architecture known as gC (generalized C
elements). Our method can synthesize FFs with
multiple inputs and that realizes most several
operations. These FFs can be activated by multiple
clocks, have clock selection mechanisms, clocks
working in both transitions and FFs that operate
according to handshaking protocol. The FSD-latch
architecture reduce the area and setup, latency and cycle
times when compared to the FF-3D. To full-custom gC
architecture the FFs obtained have great performance
and are not synthesized manually and craft way.

Our method main characterisc is the elimination of
asynchronous synthesis classical steps, like hazard free
state minimization and critical run free states marking,
what facilitates its understanding and usage. As
illustration many FFs types are shown in the ASTG
specification, and in our synthesis technique, in both
target architecture, through a FF merging synthesis
example.

This paper is organized as follows: in the section 2, we
present a temporal analysis of the proposed FSD-latch
architecture; in the section 3, we present ASTG
specification that is a variant of the MBG specification;
in the section 4, we explain the method’s synthesis
procedures and present the extension for the Nowick’s
logic minimization theory. In the section 5, we present
an example for demonstration; in the section 6, we
compare the results from our method with the ones
obtained with 3D, and finally, in the section 7, we
present the conclusions and future work.

2. FSD-LATCH ARCHITECTURE
The Fedback-Set-Dominant latch architecture is a
variant of the architecture presented in [28]. It is
composed by FSET and FRESET functions (basic
gates) and the RS latch (two configurations – to see
figures 1a,b). The two feedbacks that arrive in FSET
and FRESET functions, block the propagation of the
glitches caused by the behavior non monotonic of the
LSS signals. These feedbacks reduce the setup time of

the FF. The figure 2 shows the gC full-custom target
architecture that obtains a optimum propagation time
with a medium cost in the area.

F R E S E T

F S E T

Q and
S tate -var

LS S , C locks, S ta te-var and Q

Q-

1a

1n
2

3a

3k
4

 (a)

L S S , C lo k s , S ta te - v a r a n d Q

Q a n d
S ta te - v a r s

F R E S E T

F S E T

Q

 (b)
Figure 1 – Feedback set-dominant latch-FF
architecture: a) hybrid (gates+transistors) latch; b)
basic gates latch

Figure 2 – gC architecture.

2.1 Timing analysis
Setup time is the minimal time interval between the LSS
signals stabilization and the clock transition. Hold time
is the minimal time interval between the clock signal
transition and the allowed change of LSS signals in the
next state transition. The hold and setup times are

LSS,
Clocks,

State-vars
and Q

Q
and

State-vars

weak
FRESET

FSET
LSS, Clocks,
 State-vars

 and Q

Q

implementation dependent (in our case, from the FSD-
latch architecture).
From the FSD-latch architecture in figure 1a, we obtain
the following time equations, where T is the Latch and
logic gate delay [5,19]:

The minimum setup time is:

TSETUP ≥ TMAX-INV (1)

The minimum hold time is:

THOLD ≥ TMAX-AND-1a + TMAX-OR-2 + TMAX-LATCH −
 (TMIN-AND-1a+ TMIN-OR-2) (2)

The maximum propagation time is:

TMAX-PROPAGATION ≥ TMAX-AND-1a + TMAX-OR-2 +
 TMAX-LATCH (3)

The minimum clock pulse width is:

TMIN-PULSE ≥ THOLD (4)

3. ASTG SPECIFICATION
The method begins from a proposed specification,
called, as asynchronous state transition graph (ASTG).
The ASTG specification is a variant of the burst-multi
graph specification (BMG), that but allow OR and XOR
causality between LSS and clock signals2.
The ASTG specification is represented by a graph, in
which vertices represent stable states while arcs
represent state transitions. An initial state must exist.
There are two types of signals: 1) transition sensitive
signals with monotonic behavior, which are the clock
signals, state variables and output signals; clock signals
can be mentioned in the state transition as don't-cares3
(they can have the edge triggered of the clock signal or
not); 2) LSS signals with non-monotonic behavior that
are input signals.
LSS signals that are not mentioned in a state transition
have don't-care behavior. Clock signals, state variables
and output signals that are not mentioned in a state
transition keep their last value (they should not be
activated). The ASTG allows the AND, OR and XOR
causalities among signals LSS and clock signals.

The ASTG must satisfy the following rules:

2The MBG specification allows only OR causality
among transition sensitive signals.
3 Don't-care signal in ASTG is directed don't-care signal
of the XBM specification [6,7,8].

1. The clock signals must obey a polarity sequence in
the state transitions. For example, clk+ → clk- →
clk+.... is acceptable, but clk+ → clk+ → clk-.... is
not. To solve the polarity problem, we must
introduce new state transitions. Clock don’t-care
signal doesn’t necessarily obey the polarity
sequence. For example, clk+→ clk* → clk* →
clk+….

2. In all state transition, there should be a clock
signal, sometimes denominated compulsory. A
clock signal is compulsory if in the previous state
transition the clock signal is not don't-care.

3. LSS signals mentioned in state transitions are
labeled as a canonic (or minimum) function F or
complementally F.

4. LSS signals mentioned in state transitions that
emerge from the same state should be mutually
exclusive F and F’ complementally (restriction
called as distinguishability condition in the XBM
specification) [7,8].

5. The canonic function F with more than a term is
described or with the OR operator either with the
XOR operator

The figure 3 shows the general ASTG for conventional
and non-conventional single-edge triggered flip-flop
(SET-FF). The canonic function F describes the logic
function that FF should execute and his F’
complementally. The figure 4 shows the general ASTG
for conventional and non-conventional double-edge
triggered flip-flops (DET-FF).

0 F CLK+ / Q+ 1

CLK- /
Z0+F CLK+ / Z0+

2 3
F CLK+ / Q-

CLK- /
Z0-

F CLK+ /
Z0-

-

-

Figure 3 – General ASTG of the SET-FF

F C L K - / Q -

0 F C L K + / Q + 1

F C L K - /
Z 0 +

F C L K + /
Z 0 +

2 3
F C L K + / Q -

F C L K - / Q +

F C L K -
/ Z 0 - F C L K -

/ Z 0 -

--

-

-

Figure 4 – General ASTG of the DET-FF

3.1 Examples: ASTG
As illustration, presented different types FFs that the
Miriã-FF tool can synthesize. The F and F’ functions
are in the minimum form. The figures 5-11 show the
ASTG of the FFs types. For example, the figure 7
shows ASTG of D-type SET-FF with two inputs (D1
and D2). This FF type reduces the excitation logic
(sum-of-products) because eliminate the OR gate. The
figure 8 shows the ASTG the D-type SET-FF with
enable signal (H). This FF type was proposed for
design for testability method that enhances the
controllability of storage elements [21].

K C L K - / Q -

0 J C L K + / Q + 1

K ’ C L K -
/ Z 0 +

J ’ C L K + /
Z 0 +

2 3
K C L K + / Q -

J C L K - / Q +

J ’ C L K -
/ Z 0 - K ’ C L K +

/ Z 0 -

Figure 5 – ASTG of the JK-type DET-FF.

D C L K - / Q +

D ’ C L K - / Q -

0 D C L K + / Q + 1

D C L K - /
Z 0 +

D ’ C L K + /
Z 0 +

2 3
D ’ C L K + / Q -

D ’ C L K -
/ Z 0 -

D
C L K + /

Z 0 -

Figure 6 – ASTG of the D-type DET-FF.

D1 OR D2

CLK+ / Z0-

0
D1 OR D2 CLK+ / Q+

1

 CLK- /
Z0+

D1’ D2’ CLK+ /
Z0+

2 3
D1’ D2’ CLK+ / Q-

CLK- /
Z0-

Figure 7 – ASTG of the D-type SET-FF with two
inputs.

0 H D CLK+ / Q+ 1

 CLK- /
Z0+

H’ OR D’
CLK+ / Z0+

2 3
H D’ CLK+ / Q-

CLK- /
Z0-

H’ OR D
 CLK+ / Z0-

Figure 8– ASTG of the D-type SET-FF with clock
enable.

0

D 1S e l’ C LK +
X O R

D 2 S e l C LK + / Q + 1

 C LK - /
Z0+

D 1’ S e l’ C LK +
X O R

D 2’ S e l C LK + /
Z0+

2 3

C LK - /
Z0-

D 1S e l’ C LK +
X O R

D 2 S e l C LK + /
Z0-

D 1’ S e l’ C LK +
X O R

D 2’ S e l C LK + / Q -
Figure 9 – ASTG of the D-type SET-FF with date
select

0

D S e l' C LK 1+ C LK 2*
X O R

 D S e l C LK 2* C L K 2+ / Q +
1

 C LK 1-
C LK 2- /

Z 0+
D ’ S e l’ C LK 1+ C LK 2*

X O R
D ’ S e l C LK 1* C LK 2+ /

Z 0+

2 3

C LK 1-
C LK 2- /

Z 0 -

D S e l’ C LK 1+
C L K 2*
X O R

 D S e l C L K 1*
C LK 2+ / Z 0 -

D ’ S e l’ C LK 1+ C LK 2*
X O R

 D ’ S e l C LK 1* C L K 2+ / Q -

Figure 10 – ASTG of the D-type SET-FF with clock
select

0

B0’B1S CLK + XOR
B0S'D CLK+ XOR
B0B1’D CLK+ XOR
B1SD’ CLK+ / Q+

1

 CLK- /
Z0+

D’S’ CLK+
XOR

B0’B1’CLK+
XOR

 Bo’S’ CLK+
XOR

BoB1SD
CLK+ / Z0+

2 3

CLK- /
Z0-

B0’B1S CLK+
XOR

B0S'DClk+
XOR

B0B1’DClk+
XOR

B1SD’CLK+/
Z0-

D’S’ CLK+ XOR B0’B1’CLK+
XOR Bo’S’CLK+ XOR

BoB1SD CLK+ / Q-

Figure 11 – ASTG of the BIST-type SET-FF.

4. SYNTHESIS METHOD: PROCEDURES
The Miriã_FF tool performs the following tasks:
1. To obtain ASTG: Any type FF can be specified

with four states in ASTG, therefore ASTG is
already minimized and the assignment of the state
variables free of critical race is trivial. In this step
ASTG must capture the behavior of the type FF.

2. To obtain STCs table: transformation of the ASTG
into a table of signals transition cubes [14].

3. Two-level hazard-free logic minimization: To
each state variable and Q signal we must find the
Fset and Freset hazard-free sum-of-products
functions. (to see section 4.1).

4. Essential hazard analysis: After logic
minimization, delay elements may have to be
inserted in order to avoid essential hazard [12]. An
essential hazard is an undesirable race between an
input (clock, LSS) and the signals Z0 or Q. It may
be avoided by inserting a delay element in the
feedback Z0 Q or Q Z0.

4.1 Two-level Hazard-free logical minimization
A modified version of the literal exact ATACS
algorithm [13], that we called ATACS-FF and were
used for the logic minimization task. The two
modifications are:
1. ATACS-FF explores a table of STCs instead of a

compacted state graph.
2. In order to guarantee that the resulting circuits will

be logic hazard free: ATACS-FF should satisfy 2
requirements: Lemma 4.1 and Theorem 4.1. They
replace the requirements proposed by Nowick
[10,11] and Yun [7,8].
2.1. All trigger cubes free of violations (prime

implicants that cover a required cube) should
satisfy Lemma 4.1 (when building and
solving the binate table).

2.2. The cover of function FSET-(Z0,Q) (FRESET-(Z0,Q))
(solution of the unate table) should satisfy the
theorem 4.1

Lemma 4.1 (without proof) Let f(Z0,Q) represent
Boolean function of the state variable Z0 or output Q.
The FSET- (Z0,Q) (FRESET-(Z0,Q)) represents the
correspondent sum-of-products implementations of the
Set (Reset) signals of the feedback set-dominant latch
architecture. Let STC1[IT ,OT] represent a tS transition,
STC2[IT1,IT2, OT1, OT2] a tOR transition and STC3
[IT1,IT2…ITN, OT1, OT2,.. …OTN] a tXOR transition.
1. If f(Z0,Q) presents a transition 0 0 in or STC1 either

STC2 either STC3, then FSET-(Z0,Q) is logic hazard-
free (non covering exists).

2. If f(Z0,Q) presents a transition 1 1 or 1 0 in or
STC1 either STC2 either STC3, then FSET-(Z0,Q) is

logic hazard-free because non cover is needed (f=1
don’t-care states).

3. If f(Z0,Q) presents a transition 0 1 in or STC1 either
STC2 either STC3, then FSET-(Z0,Q) is logic hazard-
free if and only if there is a product pi ∈ FSET-(Z0,Q)
that completely covers OTi and if there is a product
pj ∈ FSET-(Z0,Q) such that pi ∩pj ≠∅ then pj cover
the final state.

There is a similar lemma for the FRESET function.

Theorem 4.1 (proof [10]): A cover of function FSET-

(Z0,Q) (FRESET-(Z0,Q)) is logic hazard-free if and only if:
1. No product of FSET-(Z0,Q) (FRESET-(Z0,Q)) crosses the

ON-set (OFF-set) of f(Z0,Q).
2. Each required cube of f(Z0,Q) is completely

contained in a unique product of FSET-(Z0,Q) (FRESET-

(Z0,Q)).
3. All products pi ∈ FSET-(Z0,Q) (FRESET-(Z0,Q)) satisfy

Lemma 4.1.

5. Example
The figure 12 shows a part of a synchronous state
machine. This example will be used to illustrate our
technique. It will synthesize the SET-FF of the type
merge (SET-FF-D + excitation logic). The figure 13
shows new merge FF with 4 inputs that correspond to
the inputs (ACK,Q2,Q1,Q0) of the excitation logic. The
first step is to extract the canonic function F and his
complement, obtained of the excitation logic of the
figure 12.

F (D0,D1,D2,Dack,Z0)=∑ (1,3,4,5,7,10,11,12,15)
e
F’ (D0,D1,D2,Dack,Z0)=∑ (0,2,6,8,9,12,13)

The second step is to obtain ASTG for the SET-FF
merge. The tool Miriã-FF accepts ASTG described in a
textual language [14].

D0 Q0

Q0

Q2

Q2

Q1

CLK

ACK

Figure 12 – Part of a synchronous state machine.

D0

D1

D2

ACK

CKL

Q0

Q0

Merging-FF

-

Figure 13 – Merging SET-FF.

After logic minimization, the Miriã-FF tool produced
the SET and RESET functions for the output Q and
state variable Z0

QSET= CLK D0 D2’Z0’ + CLK D0’DACK Z0’ +
 CLK D0’D1 D2’Z0’
QRESET= CLK D0 D2’ZO + CLK DO’D2 DACK’Z0 +
 CLK DO’D1’DACK’Z0

Z0SET= CLK’Q + CLK DO D2’Q’ +
 CLK D0’D2 DACK’Q’ + CLK D0’D1’DACK’Q’
Z0RESET=CLK’Q’ + CLK D0 D2 Q CLK D0’DACK Q +
 CLK D0’D1 D2’Q

Figures 13 and 14 shows the netlist resulting from a
trivial technology-mapping for the respectively
feedback set dominant latch and gC architectures

CLK D0 D1 D2 ACKZ0

Q

Q

Figure 14 – FSD-latch circuit of the Q signal.

Q

CLK

D0

D2

Z0Z0

Z0

D2

D0

CLK

D ACKD1

D0

CLK

Z0

D ACK

D1

D0

D2

Z0

Z0

D0 D0

CLK CLK CLK

D2

D ACK WEAK

Q

Figure 15 – gC circuit of the Q signal.

6. RESULTS AND DISCUSSION
In this section we compare our results using CMOS
technology standard-cell library of the IMEC-96 of
0.07µm. The comparison is made in terms of number of
transistors and (setup + propagation times). The tables
1,2 and 3 show the synthesis results of the Miriã-FF-
FSD-latch for different FF types. The table 1 shows 5
(home made) benchmark examples of the SET-FF
types. The results of our tool shown in table 1 obtain a
average reduction of delay (ts + tp) of 20% with penalty
of 600% in the number of transistors. The table 2 shows
5 (home made) benchmarks examples of the DET-FF
types4. The results are of the 11% in the average
reduction of delay with penalty of 850% in the number
of transistors. The table 3 shows 6 examples of known
FF types5. The results are of the 60% in the average
reduction of delay with penalty of 58% in the number of
transistors. The table 4 shows the 16 examples
implemented in the gC full custom architecture with
average penalty of 29% in the number of transistors, but
these FFs operates in the average delay of 1ns (ts+tp).

OPL-SET-FF

Merging-SET-FF

MUX-SET-FF
(Shift-Register)

CSTP-SET-FF [21]

BIST-SET-FF [21]

Miriã-FF-FSD-Latch Standard Logic

In Nt Tp+Ts
(ns) Nt Tp+Ts

(ns)

3

3.36

3.74

3.74

46

36

54

62

48

4.29

4.03

4.29

4.66

4.29

362

4

294

282

484

3.07

3.26

432

3

4

4

Symbols: In (input signals); Nt (number of transistors); Ts (max setup
time); Tp (max propagation time)
Table 1 - Results SET-FF: Miriã-FF-FSD-Latch and
Standard-cell logic.

4 The D-DET FF (using standard-cell library) was
synthesized with two D-SET-FFs + mux 2x1 [24].
5 The used standard-cell library only the D-SET is
available.

OPL-DET-FF

Merging-DET-FF

MUX-DET-FF
(Shift-Register)

CSTP-DET-FF [21]

BIST-DET-FF [21]

Miriã-FF-FSD-Latch Standard Logic

In Nt Tp+Ts
(ns) Nt Tp+Ts

(ns)

3

4.28

4.81

4.67

84

73

92

100

86

4.85

4.59

4.85

5.22

4.85

712

4

570

504

954

3.88

4.04

826

3

4

4

Table 2 - Results DET-FF: Miriã-FF and Standard-
cell logic.

D -D ET-FF

T-SET-FF

JK-D ET-FF

JK-SET-FF

D -D ET-FF

M iriã -FF-FSD -Latch S tandard Logic

In Nt Tp+Ts
(ns) N t Tp+Ts

(ns)

1

1.83

1.93

1.83

38

90

38

66

26

4.03

4.59

4.03

4.03

3.47

82

1

100

80

96

1.83

1.93

70

2

2

1

4,59901.931 96T-D ET-FF

Table 3 - Results Known FF: Miriã-FF and
Standard-cell logic.

M ir iã - F F -
g C (N t)

D - S E T - F F 3 2

M E R G IN G - D E T - F F
M E R G IN G - S E T - F F
M U X - D E T - F F
M U X - S E T - F F
C S T P - D E T - F F [2 1]
C S T P - S E T - F F [2 1]
B IS T - D E T - F F [2 1]
B IS T - S E T - F F [2 1]
O P L - D E T - F F
O P L - S E T - F F
T - D E T - F F
T - S E T - F F
J K - D E T - F F
J K - S E T - F F
D - D E T - F F

7 8
1 0 0

1 3 6

6 4
1 2 4

7 8
1 7 4
1 1 2
1 4 6
8 8
4 0
3 2
4 2
3 4
4 0

Table 4 – Results FF types: gC architecture

7. CONCLUSIONS
For digital systems that need high-speed and uses
standard-cell technology or full custom either
programmable devices (by example PLA) the
conventional FFs are an obstacles. The non-
conventional FFs synthesis is an interesting alternative
for to increase speed of the digital systems. This article
proposes the specification denominated asynchronous
state transition graph (is a variant of mult-burst graph)
and FSD-latch architecture as a standard architecture to
flip-flops. We have demonstrated that, when using the
FSD-latch architecture, we can synthesize non-
conventional FFs with a superior performance in speed,

when compared with the part of the circuits (FF +
excitation logic) generated by the standard-cell library.
As next steps in future works, we will to research the
possibility of reduction of transistors.

REFERENCES
[1] E. J. MacCluskey, Logic Design Principles With

Emphasis on Testable Semicustom Circuits, Prentice-
Hall, 1986

[2] R. H. Katz, Contemporary Logic Design, The Benjamin/
Cummings Publishing Company, Inc., 1994

[3] S. H. Unger, Asynchronous Sequential Switching
circuits, Wiley-Interscience, John Wiley & Sons, Inc.,
New York, 1969.

[4] S. H. Unger, “Double-Edge-Triggered Flip-Flops”,
IEEE Trans. on Computers, vol. C-30, No. 6, June 1981,
pp.447-451.

[5] S. H. Unger, “Clocking Schemes for High-Speed Digital
Systems”, IEEE Trans. on Computers, vol. C-35, No. 10,
October, 1986, pp.880-895.

[6] K. Y. Yun, Synthesis of Asynchronous Controllers for
Heterogeneous Systems, PhD thesis, Stanford University,
1993.

[7] K. Y. Yun and D. L. Dill, "Automatic Synthesis of
Extended Burst-Mode Circuits: Part I (Specification and
Hazard-Free Implementation)," IEEE Trans. on CAD of
Integrated Circuit and Systems, Vol. 18:2, February
1999, pp. 101-117.

[8] K. Y. Yun and D. L. Dill, "Automatic Synthesis of
Extended Burst-Mode Circuits: Part II (Automatic
Synthesis)," IEEE Trans. on CAD of Integrated Circuit
and Systems, Vol. 18:2, February 1999, pp. 118-132.

[9] K. Y. Yun, et al., “High-performance two-phase
micropipeline building blocks: double edge-triggered
latches and burst--mode select and toggle circuits,” IEE
Proc. Circuits Devices Systems, vol.143, no5, October,
1996, pp.282-288.

[10] S. M. Nowick, "Automatic Synthesis of Burst-Mode
Asynchronous Controllers,"Ph.D. thesis, Stanford
University, 1993.

[11] S. M. Nowick and D. l. Dill, “Exact Two-Level
Minimization of Hazard-Free Logic with Multiple-Input
Changes,” IEEE Trans. on CAD of Integrated Circuits
and systems, vol. 14, No. 8, August, 1995, pp.986-997.

[12] D. B. Armstrong, A. D. Fredman and P. R.
Menon,“Realization of Asynchronous Sequential
Circuits Without Insert Delay Elements,” IEEE Trans. on
Computers, vol. C-17, No.2, February 1968, pp.129-134.

[13] H. M. Jacobson and C. J. Myers, “Efficient algorithms
for exact two-level hazard-free logic minimization,“
IEEE on Trans. CAD of integrated Circuits and Systems,
vol.21, Nro.11, November 2002, pp 1269-1283.

[14] D. L. Oliveira, "Miriã: uma ferramenta para síntese de
controladores assincronos multi-rajada," Tese de
Doutorado, EPUSP, 2004.

[15] S. M. Kia, “Designs for self-checking flip-flops,” IEE
Proc. Comput. Digit. Tech. Vol. 145, Nro.2, March,
1998, pp.81-88.

[16] I. Ghosh and S. Bhawmik, “A Practical Method for
Selecting Partial Scan Flip-flops for Large Circuits,”10th
Int. Conf. on VLSI Design, January, 1997, pp.284-288.

[17] D. F. Cox, ”D, T and JK Constraints in Asynchronous
Synthesis,” 8th NASA Symposium on VLSI Design,
October, 1999.

[18] S. Sakaidani, et. Al. “Flexible Processor Based on Full-
Adder / D-Flip-Flop Merged Module,” xxx 2001, pp.35-
36

[19] I. Vasiltsov, et. Al., “Estimation of the Reliability, Speed
and Cost Parameters of the Different Type of Flip-
Flops,” I. Workshop on Intelligent Data Acquisitions and
Advanced Computing Systems Technology and
Applications, 2001, pp103-106.

[20] K. Hirota and K. Ozawa, “Concept of a fuzzy flip-flop,”
IEE Trans. systems Man and Cybernetics, Vol. 19,
Nro.5, 1989, pp.980-997.

[21] C. E. Stroud, “Automated Bist for Sequential Logic
Synthesis,”IEEE Design & Test of Computers,
December 1998, pp.22-32.

[22] F. U. Rosenberger, et. Al., “Q-Modules: Internally
Clocked Delay-Insensitive Modules,” IEEE Trans. on
Computers, Vol.37, Nro.9, September 1988, pp.1005-
1018.

[23] T. Lang, et. Al., “Individual Flip-Flops with Gated
Clocks for Low Power Datapaths,” IEEE Trans. on
Circuits and Systems-II: Analog Digital Signal,
processing, Vol.44, Nro.6, June, 1997, pp.507-516.

[24] A. G. M. Strollo, et. Al., “Power dissipation in One-
Latch and Two-Latch Double Edge Triggered Flip-

Flops,” Proc. 14th IEEE Int. Electronics, Circuits and
Systems, vol 3, 1999, pp.1419-1422.

[25] M. Pedram, et al., “A New Design of Double Edge
Triggered Flip-Flop,” Proc. of the ASP-DAC South
Pacific, 1998, pp.417-421.

[26] C. Piquet and J. Zahnd, “STG-Based Synthesis of Speed-
independent CMOS Cells,” Workshop on Exploitation of
STG-based Design Technology, St. Petersburg, July,
1998.

[27] J. Cortadella, et al., “Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers,” IEICE Trans. on Inf. And Systems, vol.E80-
D, no3, March, 1997, pp.315-323.

[28] C. Ykman-Couvreur, et al., “Assassin: A Synthesis
for Asynchronous Control Circuits,” Tech. Rep.
IMEC, User and Tutorial manual, September,
1994.

[29] R. M. Fuhrer, S. M. Nowick et al., “MINIMALIST:
An environment for the synthesis and verification
of burst-mode asynchronous machines,” Proc.
IEEE/ACM Int. Workshop logic Synthesis, 1998.

