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ABSTRACT 

The Flip-Flop (FF) memory element has a significant 
contribution in synchronous digital systems  clock rate 
calculation. Due to the need of better the performance 
of a system digital, several techniques have been used 
for this purpose. An interesting technique is to use 
different types of (non-conventional) FFs resulting in a 
improvement in the performance of the digital system 
clock rate. In this article we propose a very practical 
method of automatic synthesis of the different types 
FFs.  Our method steps eliminate of states minimization 
and state assignment. It synthesizes non-conventional 
FFs that will contribute in the increase of the system 
clock rate. 
 
Keywords: flip-flops types, asynchronous logic, 
hazards, critical race and automatic synthesis.   
 
1. INTRODUCTION 
The increase synchronous digital systems applications 
and the need of better performance, many techniques 
had been proposed to Finite State Synchronous 
Machines (MEFS) and Datapath [1,2] synthesis. These 
techniques are related to low power [23,24], testability 
[21], high speed [5] and other logics [20]. In MEFS and 
Datapath synthesis the memory element Flip-Flop (FF) 
has a significant participation implementing many 
target architectures [1,2]. Targeting the performance 
increase of these architectures, new synthesis 
techniques, use each time more different types of FFs. 
Beyond conventional FFs  (Single-Edge-Triggered 
(SET) D, T, JK and RS), there is a demand for FFs 
types like fuzzy [20], self-checking [15], Q [22], scan 
[16], self-timed [27], Bist [21], Double-Edge-Triggered 
[4,25], etc. For example, the usage of Double-Edge-
Triggered FFs is an interesting alternative to power 
reducing and speed increasing [5]. Another way for 
target architecture performance increase, reducing the 
number of levels in critical path, so increasing clock 

rates, is to join the excitation logic with its respective 
FF [18]1. In this article the different FFs types are called 
non-conventional FFs. 
 
Many tools had been proposed to asynchronous circuit 
synthesis, like: Petrify [27], Assassin [28], Minimalist 
[29], 3D [6,7,8] and Miriã-GFM [14]. These tools can 
synthesize many FFs types, but the performance might 
be compromised because the synthesized FF must 
operate correctly (hazard free) and be optimized (area 
and setup, hold and propagation times). The tools 
Petrify and Assassin use the State Transition Graph 
(STG) specification, that is a Petri-Net interpreted 
[17,26] and the Minimalist tool uses Burst Mode (BM) 
specification, based in state diagrams [10]. The STG 
and BM specifications are not the most appropriate to 
specify the FF behavior, because cannot describe non-
monotonic level sensitive signals (LSS – FFs inputs) [7, 
26]. The 3D tool uses the Extended Burst-Mode (XBM) 
specification, that describes the FFs behavior, but the 
performance (area and speed) of FF-3D, based in basic 
gates, generated by the tool is inefficient [14]. The 
Miriã-GFM tool uses Multi Burst Graph [14] 
specification that is a XBM specification extension, 
generates many FFs types with good performance when 
compared to the FF-3D, but the LSS signals must 
satisfy the fundamental mode.  
 
Because of asynchronous project problems and its 
performance, the synthesis of many FFs types is, in 
most cases, full custom, made manually and in a craft 
way [9,25]. In despite of these FFs normally having 
great performance, the manual and craft synthesis can 
be impracticable to most complex FFs types, what 
happens to the Merging FF [3,4]. In despite of full 
custom FFs have better performance, the FFs 
synthesized by basic gates and latches (standard-cell 
                                                           
1  In this article we called the circuit to contain FF and 
the excitation logic of the type merging FF. 



technology) are interesting too, because of cost and 
project time reducing. In [4] is presented a technique for 
conventional FFs synthesis from latches and basic 
gates, but the performance is impracticable (setup time 
too long). 
 
This articles proposes an automatic synthesis method to 
all FFs types, use the Asynchronous State Transition 
Graph (ASTG) specification that is a variant from GMR 
specification that permits efficiently describing any FF. 
The FFs are implemented in the target architecture 
based in basic gates and RS latches, called Feedback 
Set-Dominant (FSD-latch) that is a variant from 
architecture used by Petrify tool [27], or in full-custom 
target architecture known as gC (generalized C 
elements). Our method can synthesize FFs with 
multiple inputs and that realizes most several 
operations. These FFs can be activated by multiple 
clocks, have clock selection mechanisms, clocks 
working in both transitions and FFs that operate 
according to handshaking protocol. The FSD-latch 
architecture reduce the area and setup, latency and cycle 
times when compared to the FF-3D. To full-custom gC 
architecture the FFs obtained have great performance 
and are not synthesized manually and craft way. 
 
Our method main characterisc is the elimination of 
asynchronous synthesis classical steps, like hazard free 
state minimization and critical run free states marking, 
what facilitates its understanding and usage. As 
illustration many FFs types are shown in the ASTG 
specification, and in our synthesis technique, in both 
target architecture, through a FF merging synthesis 
example. 
 
This paper is organized as follows: in the section 2, we 
present a temporal analysis of the proposed FSD-latch 
architecture; in the section 3, we present ASTG 
specification that is a variant of the MBG specification; 
in the section 4, we explain the method’s synthesis 
procedures and present the extension for the Nowick’s 
logic minimization theory. In the section 5, we present 
an example for demonstration; in the section 6, we 
compare the results from our method with the ones 
obtained with 3D, and finally, in the section 7, we 
present the conclusions and future work. 

 
2. FSD-LATCH ARCHITECTURE 
The Fedback-Set-Dominant latch architecture is a 
variant of the architecture presented in [28]. It is 
composed by FSET and FRESET functions (basic 
gates) and the RS latch (two configurations – to see 
figures 1a,b). The two feedbacks that arrive in FSET 
and FRESET functions, block the propagation of the 
glitches caused by the behavior non monotonic of the 
LSS signals. These feedbacks reduce the setup time of 

the FF.  The figure 2 shows the gC full-custom target 
architecture that obtains a optimum propagation time 
with a medium cost in the area.   
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Figure 1 – Feedback set-dominant latch-FF 
architecture: a) hybrid (gates+transistors) latch; b) 
basic gates latch  

Figure 2 – gC architecture. 
 
2.1 Timing analysis  
Setup time is the minimal time interval between the LSS 
signals stabilization and the clock transition. Hold time 
is the minimal time interval between the clock signal 
transition and the allowed change of LSS signals in the 
next state transition. The hold and setup times are 
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implementation dependent (in our case, from the FSD-
latch architecture).  
From the FSD-latch architecture in figure 1a, we obtain 
the following time equations, where T is the Latch and 
logic gate delay [5,19]:  

The minimum setup time is: 
 
TSETUP  ≥ TMAX-INV                                                         (1) 
 

The minimum hold time is: 
 
THOLD   ≥ TMAX-AND-1a + TMAX-OR-2 + TMAX-LATCH − 
             (TMIN-AND-1a+ TMIN-OR-2)                                  (2) 
 

The maximum propagation time is: 
 
TMAX-PROPAGATION  ≥ TMAX-AND-1a + TMAX-OR-2 + 
                             TMAX-LATCH                                (3) 
 
 

The minimum clock pulse width is: 
 
TMIN-PULSE  ≥ THOLD                                                                              (4) 
 
 
3. ASTG SPECIFICATION 
The method begins from a proposed specification, 
called, as asynchronous state transition graph (ASTG). 
The ASTG specification is a variant of the burst-multi 
graph specification (BMG), that but allow OR and XOR 
causality between LSS and clock signals2.  
The ASTG specification is represented by a graph, in 
which vertices represent stable states while arcs 
represent state transitions. An initial state must exist.    
There are two types of signals: 1) transition sensitive 
signals with monotonic behavior, which are the clock 
signals, state variables and output signals; clock signals 
can be mentioned in the state transition as don't-cares3 
(they can have the edge triggered of the clock signal or 
not); 2) LSS signals with non-monotonic behavior that 
are input signals.  
LSS signals that are not mentioned in a state transition 
have don't-care behavior. Clock signals, state variables 
and output signals that are not mentioned in a state 
transition keep their last value (they should not be 
activated). The ASTG allows the AND, OR and XOR 
causalities among signals LSS and clock signals. 
 

The ASTG must satisfy the following rules: 
 

                                                           
2The MBG specification allows only OR causality 
among transition sensitive signals. 
3 Don't-care signal in ASTG is directed don't-care signal 
of the XBM specification [6,7,8]. 

1. The clock signals must obey a polarity sequence in 
the state transitions. For example, clk+ → clk- → 
clk+.... is acceptable, but clk+ → clk+ → clk-.... is 
not. To solve the polarity problem, we must 
introduce new state transitions. Clock don’t-care 
signal doesn’t necessarily obey the polarity 
sequence. For example, clk+→  clk* → clk* → 
clk+….  

2. In all state transition, there should be a clock 
signal, sometimes denominated compulsory. A 
clock signal is compulsory if in the previous state 
transition the clock signal is not don't-care.   

3. LSS signals mentioned in state transitions are 
labeled as a canonic (or minimum) function F or 
complementally F.  

4. LSS signals mentioned in state transitions that 
emerge from the same state should be mutually 
exclusive F and F’ complementally (restriction 
called as distinguishability condition in the XBM 
specification) [7,8].  

5. The canonic function F with more than a term is 
described or with the OR operator either with the 
XOR operator 

 
 
The figure 3 shows the general ASTG for conventional 
and non-conventional single-edge triggered flip-flop 
(SET-FF). The canonic function F describes the logic 
function that FF should execute and his F’ 
complementally. The figure 4 shows the general ASTG 
for conventional and non-conventional double-edge 
triggered flip-flops (DET-FF). 
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Figure 3 – General ASTG of the SET-FF  
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Figure 4 – General ASTG of the DET-FF 



3.1 Examples: ASTG  
As illustration, presented different types FFs that the  
Miriã-FF tool can synthesize. The F and F’ functions 
are in the minimum form.  The figures 5-11 show the 
ASTG of the FFs types. For example, the figure 7 
shows ASTG of D-type SET-FF with two inputs (D1 
and D2).  This FF type reduces the excitation logic 
(sum-of-products) because eliminate the OR gate. The 
figure 8 shows the ASTG the D-type SET-FF with 
enable signal (H). This FF type was proposed for   
design for testability method that enhances the 
controllability of storage elements [21]. 
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Figure 5 – ASTG of the JK-type DET-FF.  
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Figure 6 – ASTG of the D-type DET-FF. 
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Figure 7 – ASTG of the D-type SET-FF with two  
inputs. 
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Figure 8– ASTG of the D-type SET-FF with clock 
enable. 
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Figure 10 – ASTG of the D-type SET-FF with clock 
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Figure 11 – ASTG of the BIST-type SET-FF. 
 
 



4. SYNTHESIS METHOD: PROCEDURES 
The Miriã_FF tool performs the following tasks: 
1. To obtain ASTG: Any type FF can be specified 

with four states in ASTG, therefore ASTG is 
already minimized and the assignment of the state 
variables free of critical race is trivial. In this step 
ASTG must capture the behavior of the type FF.  

2. To obtain STCs table:  transformation of the ASTG 
into a table of signals transition cubes [14]. 

3. Two-level hazard-free logic minimization: To 
each state variable and Q signal we must find the 
Fset and Freset hazard-free sum-of-products 
functions. (to see section 4.1). 

4. Essential hazard analysis: After logic 
minimization, delay elements may have to be 
inserted in order to avoid essential hazard [12]. An 
essential hazard is an undesirable race between an 
input (clock, LSS) and the signals Z0 or Q. It may 
be avoided by inserting a delay element in the 
feedback Z0 Q or Q Z0.  

 
 
4.1 Two-level Hazard-free logical minimization 
A modified version of the literal exact ATACS 
algorithm [13], that we called ATACS-FF and were 
used for the logic minimization task. The two 
modifications are: 
1. ATACS-FF explores a table of STCs instead of a 

compacted state graph.     
2. In order to guarantee that the resulting circuits will 

be logic hazard free: ATACS-FF should satisfy 2 
requirements: Lemma 4.1 and Theorem 4.1. They 
replace the requirements proposed by Nowick 
[10,11] and Yun [7,8]. 
2.1. All trigger cubes free of violations (prime 

implicants that cover a required cube) should 
satisfy Lemma 4.1 (when building and 
solving the binate table). 

2.2. The cover of function FSET-(Z0,Q) (FRESET-(Z0,Q)) 
(solution of the unate table) should satisfy the 
theorem 4.1 

 
Lemma 4.1 (without proof) Let f(Z0,Q) represent 
Boolean function of the state variable Z0 or output Q. 
The FSET- (Z0,Q)  (FRESET-(Z0,Q)) represents the 
correspondent sum-of-products implementations of the 
Set (Reset) signals of the feedback set-dominant latch 
architecture. Let STC1[IT ,OT] represent a tS transition, 
STC2[IT1,IT2, OT1, OT2] a tOR transition and STC3 
[IT1,IT2…ITN, OT1, OT2,.. …OTN] a tXOR transition. 
1. If f(Z0,Q) presents a transition 0 0 in or STC1 either 

STC2 either STC3, then FSET-(Z0,Q) is logic hazard-
free (non covering exists). 

2. If f(Z0,Q) presents a transition 1 1 or 1 0 in or 
STC1 either STC2 either STC3, then FSET-(Z0,Q)  is 

logic hazard-free because non cover is needed (f=1 
don’t-care states). 

3. If f(Z0,Q) presents a transition 0 1 in or STC1 either 
STC2 either STC3, then FSET-(Z0,Q)  is logic hazard-
free if and only if there is a product pi ∈ FSET-(Z0,Q) 
that completely covers OTi  and if there is a product 
pj ∈ FSET-(Z0,Q)  such that pi ∩pj ≠∅ then pj  cover 
the final state. 

 
There is a similar lemma for the FRESET function. 
 
Theorem 4.1 (proof [10]): A cover of function FSET-

(Z0,Q) (FRESET-(Z0,Q)) is logic hazard-free if and only if: 
1. No product of FSET-(Z0,Q) (FRESET-(Z0,Q)) crosses the 

ON-set (OFF-set) of f(Z0,Q). 
2. Each required cube of f(Z0,Q)  is completely 

contained in a unique product of FSET-(Z0,Q) (FRESET-

(Z0,Q)). 
3. All products pi ∈ FSET-(Z0,Q) (FRESET-(Z0,Q)) satisfy 

Lemma 4.1. 
 
5. Example 
The figure 12 shows a part of a synchronous state 
machine.  This example will be used to illustrate our 
technique. It will synthesize the SET-FF of the type 
merge (SET-FF-D + excitation logic). The figure 13 
shows new merge FF with 4 inputs that correspond to 
the inputs (ACK,Q2,Q1,Q0) of the excitation logic. The 
first step is to extract the canonic function F and his 
complement, obtained of the excitation logic of the 
figure 12. 
 
F (D0,D1,D2,Dack,Z0)=∑ (1,3,4,5,7,10,11,12,15) 
e 
F’ (D0,D1,D2,Dack,Z0)=∑ (0,2,6,8,9,12,13) 
 
The second step is to obtain ASTG for the SET-FF 
merge. The tool Miriã-FF accepts ASTG described in a 
textual language [14].  
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Figure 12 – Part of a synchronous state machine. 
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Figure 13 – Merging SET-FF. 
 
After logic minimization, the Miriã-FF tool produced 
the SET and RESET functions for the output Q and 
state variable Z0 
 
QSET= CLK D0 D2’Z0’ + CLK D0’DACK Z0’  +  
          CLK D0’D1 D2’Z0’ 
QRESET= CLK D0 D2’ZO + CLK DO’D2 DACK’Z0 +    
              CLK DO’D1’DACK’Z0 
 
Z0SET= CLK’Q + CLK DO D2’Q’ + 
          CLK D0’D2 DACK’Q’ + CLK D0’D1’DACK’Q’ 
Z0RESET=CLK’Q’ + CLK D0 D2 Q CLK D0’DACK Q +   
               CLK D0’D1 D2’Q 
 
Figures 13 and 14 shows the netlist resulting from a 
trivial technology-mapping for the respectively 
feedback set dominant latch and gC architectures 

CLK D0 D1 D2 ACKZ0

Q

Q

Figure 14 – FSD-latch circuit of the Q signal. 
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Figure 15 – gC circuit of the Q signal. 
 
6. RESULTS AND DISCUSSION 
In this section we compare our results using CMOS 
technology standard-cell library of the IMEC-96 of 
0.07µm. The comparison is made in terms of number of 
transistors and (setup + propagation times). The tables 
1,2 and 3 show the synthesis results of the Miriã-FF-
FSD-latch for different FF types. The table 1 shows 5 
(home made) benchmark examples of the SET-FF 
types. The results of our tool shown in table 1 obtain a 
average reduction of delay (ts + tp) of 20% with penalty 
of 600% in the number of transistors. The table 2 shows 
5 (home made) benchmarks examples of the DET-FF 
types4. The results are of the 11% in the average 
reduction of delay with penalty of 850% in the number 
of transistors. The table 3 shows 6 examples of known 
FF types5. The results are of the 60% in the average 
reduction of delay with penalty of 58% in the number of 
transistors.     The table 4 shows the 16 examples 
implemented in the gC full custom architecture with 
average penalty of 29% in the number of transistors, but 
these FFs operates in the average delay  of 1ns (ts+tp).      

OPL-SET-FF

Merging-SET-FF

MUX-SET-FF
(Shift-Register)

CSTP-SET-FF [21]

BIST-SET-FF [21]

Miriã-FF-FSD-Latch Standard Logic

In Nt Tp+Ts
(ns) Nt Tp+Ts

(ns)

3

3.36

3.74

3.74

46

36

54

62

48

4.29

4.03

4.29

4.66

4.29

362

4

294

282

484

3.07

3.26

432

3

4

4

 
Symbols: In (input signals); Nt (number of transistors); Ts (max setup 
time); Tp (max propagation time) 
Table 1 - Results SET-FF: Miriã-FF-FSD-Latch and 
Standard-cell logic. 

                                                           
4  The D-DET FF (using standard-cell library) was 
synthesized with two D-SET-FFs + mux 2x1 [24]. 
5 The used standard-cell library only the D-SET is 
available. 



OPL-DET-FF

Merging-DET-FF

MUX-DET-FF
(Shift-Register)

CSTP-DET-FF [21]

BIST-DET-FF [21]

Miriã-FF-FSD-Latch Standard Logic

In Nt Tp+Ts
(ns) Nt Tp+Ts

(ns)

3

4.28

4.81

4.67

84

73

92

100

86

4.85

4.59

4.85

5.22

4.85

712

4

570

504

954

3.88

4.04

826

3

4

4

 
Table 2 - Results  DET-FF: Miriã-FF and Standard-
cell logic. 

D -D ET-FF

T-SET-FF

JK-D ET-FF

JK-SET-FF

D -D ET-FF

M iriã -FF-FSD -Latch S tandard  Logic

In Nt Tp+Ts
(ns) N t Tp+Ts

(ns)

1

1.83

1.93

1.83

38

90

38

66

26

4.03

4.59

4.03

4.03

3.47

82

1

100

80

96

1.83

1.93

70

2

2

1

4,59901.931 96T-D ET-FF

 
Table 3 - Results Known FF: Miriã-FF and 
Standard-cell logic. 

M ir iã - F F -
g C  ( N t )

D - S E T - F F 3 2

M E R G IN G - D E T - F F
M E R G IN G - S E T - F F
M U X - D E T - F F
M U X - S E T - F F
C S T P - D E T - F F [2 1 ]
C S T P - S E T - F F [2 1 ]
B IS T - D E T - F F  [2 1 ]
B IS T - S E T - F F  [ 2 1 ]
O P L - D E T - F F
O P L - S E T - F F
T - D E T - F F
T - S E T - F F
J K - D E T - F F
J K - S E T - F F
D - D E T - F F

7 8
1 0 0

1 3 6

6 4
1 2 4

7 8
1 7 4
1 1 2
1 4 6
8 8
4 0
3 2
4 2
3 4
4 0

 
 
Table 4 – Results FF types: gC architecture 
 
7. CONCLUSIONS 
For digital systems that need high-speed and uses 
standard-cell technology or full custom either 
programmable devices (by example PLA) the 
conventional FFs are an obstacles. The non-
conventional FFs synthesis is an interesting alternative 
for to increase speed of the digital systems. This article 
proposes the specification denominated asynchronous 
state transition graph (is a variant of mult-burst graph) 
and FSD-latch architecture as a standard architecture to 
flip-flops. We have demonstrated that, when using the 
FSD-latch architecture, we can synthesize non-
conventional FFs with a superior performance in speed, 

when compared with the part of the circuits (FF + 
excitation logic) generated by the standard-cell library. 
As next steps in future works, we will to research the 
possibility of reduction of transistors.  
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