
PERFORMANCE EVALUATION OF NETWORK PROCESSOR'S BUS ARBITER 
POLICIES USING WORST CASE DETERMINISTIC ANALYTICAL 

METHODOLOGIES. 

Frederico de Faria, Marius Strum, Wang Jiang Chau

Microelectronics Laboratory, Polytechnic School of University of São Paulo

ffaria@lme.usp.br, strum@lme.usp.br, jcwang@lme.usp.br

ABSTRACT

Abstract: In this paper an analytical modeling technique based 
on deterministic worst case scenarios using Network Calculus is 
applied, using concepts like convolution and deconvolution to the  
study of time-based performance analysis of network processors.  
We present  conceptual  models  that  mimic  network  processors  
running  IPv4  forwarding  applications,   with  emphasis  on  
detailed  study  of  bus  and  bus  arbiter  policy  latencies.  The  
growing  number  of  electronic  systems  with  communication 
capabilities  has  raised  the  necessity  of  exploration  of  huge  
number  of  different  possible  micro-architectures  that  include  
many  communication  and  other  different  components  (like  
cryptography, audio and video decoders) in a manner that makes 
it   possible  the  elimination  of  undesired  architectures,  
determination of high level system parameters (buffer utilization, 
end-to-end  latencies,  percentage  of  use),  localization  of  
bottlenecks  and  answer  “what-if”  questions,  all  of  them in  a  
timely fashion. The problems shown above can be addressed by  
using analytical modeling techniques.

SECTION I - INTRODUCTION

The  electronic  systems  that  incorporate  communication 
capabilities  are  becoming  more  and  more  common  in  the 
marketplace,  as  it  is  the  widespread  use  of  wireless  and 
networked  devices.  Network  processors  are  an  intrinsic 
component  in  this  context  since  they  are  present  in  devices 
ranging from access gateways to core devices, being fundamental 
pieces that connect all networked devices. The constant advances 
in  VLSI processing  technology have allowed greater  levels  of 
chip  integration,  which  has  led  complex  systems  as  network 
processors to be built by inserting other modules or intellectual 
property cores on a single die, being known as system-on-chip 
(SOC) implementation.  

SoC designs have been growing in terms of size (number 
of blocks, interfaces, standards, transistor count), design time and 
complexity.  As  such,  tight  project  cycles  and  time  to  market 
pressures have challenged engineers to deliver designs on shorter 
schedules.  Phases like specification,  architecture  definition and 
implementation have become more complex and designers have 
been  pressured  to  shrink  them  in  aggressive  time-frames. 
Therefore, design time and complexity have been major concerns 
for designers. In order to make the design cycle more efficient, 

the  integration  of  reusable  blocks  (both  in-house  and  licensed 
cores) has turned to be a must, since the development of current 
electronic systems is practically infeasible from the ground. One 
of the most common approaches adopted by the design industry is 
the platform based design where the set of reusable components 
and  their  communication  interfaces  are  standardized,  and  the 
system integration  designer  explore  the  trade-offs  of  different 
architectural configurations. Most current complex SoCs include 
an  important  architectural  component,  generic  programmable 
microprocessors running a software application. 

Performance  analysis  of  systems  composed  of  reusable 
blocks,  made  on  very  early  development  stages  is  highly 
desirable. A performance analysis performed at high abstraction 
level (like the analytical domain) can contribute to a significant 
reduction  of  design  space  exploration  alternatives  for  feasible 
architectures.  Those  that  don't  comply  with  specifications  are 
eliminated  and,  more  important,  design  time  is  reduced  since 
several undesired iterations between high level (behavioral,  for 
instance)  and  low  level  (RTL)  implementation  cycles  are 
discarded. In this phase, it is possible to offer the design team a 
sum of answers to “what-if” questions and a broad analysis of 
tradeoff architectures. In [8], it has been shown that even at later 
stages  of  project  development,  the  refinements  of  analytical 
model  in  terms  of  accuracy  is  indeed  desired  for  the  next 
generation of product. Platform-based designs are then one viable 
design methodology to reach such aggressive goals. 

With  modeling  and  execution  times  shorter  than  other 
methods  like  instruction  level  and  cycle-accurate  simulation, 
hundreds of different architectures can be explored in a matter of 
minutes, allowing the former methods to investigate architectures 
that  really  conform  to  specifications  [5],  [6].  Many  design 
exploration  tools  like  EXPO [4]  have been used to  prove that 
analytical modeling techniques allow the exploration of hundreds 
of different architectures, submitted to constraints, in a matter of 
minutes. The models and techniques applied in this papers derive 
maximum and minimum values to system parameters  like buffer 
utilization,  end-to-end  latencies,  percentage  of  use  ,  both 
component and systemwide. The results obtained in Section V are 
derived  from the  use  of  an  in-house  tool  that  implements  the 
theoretical concepts  in this paper. 

mailto:ffaria@lme.usp.br
mailto:ffaria@lme.usp.br
mailto:strum@lme.usp.br
mailto:ffaria@lme.usp.br
mailto:jcwang}@lme.usp.br


Related works: In [3], the technique results are compared 
against  results  obtained  from  a  tool  provided  by  a  network 
processor  supplier,  for  an application of  IPv4  forwarding,  like 
fundamental routing tasks. It is shown that high levels of fidelity 
for the model can be achieved, even though some simplifications 
in the modeling of bus arbiter are applied.

In [2] the present model technique is shown, and a case 
study, applied to network processors, are evaluated. Again, some 
enhancement  to  the  model  in  terms  of  bus  and  bus  arbiter 
detailing can move the technique one step further.

This technique has been applied to the analytical study of 
NP and its  components  like  generic  programmable processors, 
dedicated  microengines,  ciphers,  checksum  modules  among 
others.,  and hence is  flexible  enough to  support  more detailed 
approaches, oriented, in particular, to explore the influence of bus 
arbiter policies and associated latencies.

Many  analytical  techniques  like  Stochastic  Automata 
networks, Calculus of Communication Systems, Communicating 
Sequential Processes and Algebra of Communicating Processes 
have  being  used  to  model  communication  systems,  but  the 
Network Calculus can bridge together characteristics presented in 
communication systems and also present in computing systems.  

In  [9],  is  presented  a  analytical  performance  technique 
that compares the results with a SystemC based model. With a 
security  processor  in  detail,  this  technique  is  based  on 
probabilistic-statistical analysis. Although this last approach have 
being  used   by  scientific  community  and  industrial  tools  to 
perform analytical  studies  for  many  years  now,   the  growing 
complexity  of  systems  and  exponential  growth  in  number  of 
“nodes” is rapidly making it an not-so-feasible alternative due to 
increasing computational demands and at the same time that other 
techniques bring similar results in a matter of seconds requiring 
much less computational resources.

The remainder of this paper is organized as follows. In 
Section II we approach theoretical concepts that form the basis of 
the  present  technique.  We present  in  Section  III  details  of  an 
application of this theory to an electronic system like NP. Next, 
in Section IV different approaches of modeling an NP are shown. 
The  results  of  this  comparison  are  presented and discussed in 
Section V and finally in Section VI the conclusions of this paper 
are presented.

SECTION II - THEORY

In [1]  arrival  and service curves are  defined in  the context  of 
integrated services networks.

(ARRIVAL  CURVE).  Given  a  wide-sense  increasing 
function   α defined  for  t   ≥ 0,  we  say  that  a  flow  of  network 
packets R is constrained by  α if and only if for all s  ≤ t:

R(t)   − R(s)   ≤ α(t   − s) . In this case,  R  has   α as an arrival 
curve, or also that R is  α -smooth.

(SERVICE  CURVE).  Consider  a  system  S  and  a  flow 
through S with input and output function R and R∗. We say that 
S  offers to the flow a  service curve   β if and only if   β is wide 

sense increasing, β(0) = 0 and R  ∗  ≥ R  ⊗ .β

Many  algebraic  operations  are  applied  over  these  two 
curves,  like  convolution  and  deconvolution  [1].  When  applied 
over a certain resource, other curves are derived, like final arrival 
and final service curves..

DEFINITION - MIN-PLUS CONVOLUTION - Let f and g 
be two functions or sequences of F. The min-plus convolution of 
f and g is the function (f  ⊗ g)(t) = inf 0≤s≤t {f(t  − s) + g(s)}. (If t 
< 0, (f  ⊗ g)(t) = 0).

DEFINITION -  MIN-PLUS DECONVOLUTION -  Let  f 
and  g  be  two  functions  or  sequences  of  F.  The  min-plus 
deconvolution of f by g is the function (f  ⊘ g)(t) = sup u≥0 {f(t + 
u)  − g(u)}.

In the context of network processors , arrival curves can be 
interpreted as the throughput which data (network packets, bytes) 
arrive in a port  of a micro-architecture resource in intervals of 
time. They have many slopes, ranging from the nominal rate of a 
certain  channel  to  lower  values,  depending  on  network 
characteristics.  Since network traffic  characteristics  like  packet 
size, type of flows and throughput can vary a lot, arrival curves 
are represented with different slopes. representing the sustained 
transfer  rate  on intervals  of  time.  Service curves represent  the 
capacity  of  a  resource  to  process  data  in  a  period  of  time. 
Different categories of resource have their own types of service 
curves, either peak  rate (slope) , burst-delay (step), rate-latency 
(slope shifted right), affine functions (slope shifted left), among 
others.  Arrival and service curves can be represented as lower 
and  upper  arrival  curves,  representing  the  minimum  and 
maximum flow rates and computing capacity.  In the context of 
the  present  work,  physically,  the  curve  resulting  from  the 
convolution of two curves is interpreted as the workload left from 
a certain resource.

For a refined derivation of following equations, please refer 
to [1]. 

Graphically,  upper  and  lower  curves  are  represented  as 
three parameters forming two segments [Figure 1 bellow].

• al  (t)=L[ql
a,rl

a,sl
a]=

max
0≤t ≤ ∆

{rl×t,ql
a+sl×t,0}  ; 

au (t)=U[qu
a,ru

a,su
a]=

min
0≤t ≤ ∆

{ru×t,qu
a+su×t}

(1)

• bl(t)=L[ql
b,rl

b,sl
b]=

max
0≤t ≤∆

{rl×t,ql
b+sl×t,0} ; 

bu(t)=U[qu
b,ru

b,su
b]=

min
0≤t ≤∆

{ru×t,qu
b+su×t}

(2)

Where  q represents the largest packet size for the flow, r 
and  s  represent  the  nominal  transfer  rate  and  the  sustained 
transfer  rate,  respectively.  Network traces  obtained from either 
synthetical or real world traffic flows can be utilized to derive 
packet sizes and slopes other than the nominal.

2



For an analysis to take place, some stability criteria must be 
satisfied.

Let  ɤ be a curve, upper curves must be concave and lower 
curves must be convex, and 

(1) rlower ≤ rupper;

(2) qupper ≥0 , rupper>supper≥0; rupper= supper↔ qupper=0;

(3) qlower≤0 , slower>rlower≥0; rlower= slower↔ qlower=0;

In case condition (1) is violated, there is not an intersection 
∆, meaning that there is no point  p , p≠0,   in upper curve that 
satisfies ɤU(p) > ɤL(p) .

For a given resource, there are four other curves that are 
obtained from the original arrival and service curves (upper and 
lower)  and  represent  the workload processed  in  that  resource 
(final arrival curves) and the remaining resource capacity after 
processing the original workload (final service curves).

The  relationship  between  arrival  and  service  curves  are 

defined as the following equations (the notation ' indicates a final 
curve) [1]

• a'l(∆)=
inf

0≤t ≤ ∆
{al (t) + bl(∆-t)}=(bl⊗al)(t)

(3)

• a'u(∆)=
inf

0≤t ≤∆
{
superior
v≥ 0

{au(t+v)–

bl(v)}+bu(∆-t), bu(∆)}=
inf

0≤t ≤∆
{(au⊘bl)⊗bu,bu(∆)}

(4)

• b'l(∆)=
superior
0≤ t ≤∆

{bl(t)-au(t)} (5)

• b'u(∆)=
superior
0≤ t ≤ ∆

{bu(t)-al(t)} (6)

Notice that for convolution, critical circumstances happen 
before ∆, (Figure 1). The processing capacity is smaller than the 
incoming data flow, hence forcing the existence of buffer B and 
latency ð. After ∆, the processing capacity is greater than the 
incoming workloads, and therefore B and ð are not critical.

Also, the following values are derived from the curves.

• delay ð ≤
superior
t ≥ 0

{inf{t≥0:au (t)≤bl(t+t)}}

(7)
Which is the largest horizontal distance between the two 

curves, representing the maximum end-to-end flow latency.

• backlog B ≤
superior
t ≥ 0

{au (t)-bl(t)}

(8)
Which is the largest vertical distance between the two 

curves, representing the maximum buffer required in order to 
process an incoming flow.

• utilization  m  ≤  
limit
∆→∞

[bu(∆)-b¹l(∆)]/bu(∆)

(9)
Is the maximum utilization in function of time for a given 

resource.
A first step for constructing the model is the generation of a 

task graph that comprises all task that are executed in the system 
to  be  modeled.  Task  graphs  have  vertices  containing  tasks 
performed by resources present in the system. 

3

Figure 2 - Representation of a vertice in 
Scheduling Network Graph and associated 
arrival and service curves

Figure 1 - Example of lower and upper  curves

s
u

L

U

r
u

r
l

s
l

p
u

p
l

D

q
u



SECTION III – GENERAL SCHEDULING NETWORK 
GRAPH.

In a SNG, the flow of the data through a system is modeled as a 

sequence  of  tasks,  represented  by  vertices,  as  it  is  shown  in 
Figure 4.  On a Scheduling Network graph (SNG),  vertices are 
disposed  on  columns  and  lines,   having  specific  purposes. 
Columns represent the different resources allocated at the micro-
architecture. These resources can be divided into four categories. 
Processing  modules,  communication  structures,  communication 
controllers  and  storage.  Examples  of  processing  modules  are 
generic  programmable  microprocessors  and  dedicated 
microengines.  Communication  structures  are  multiplexers  and 
wires.  Communication  controllers  are  modules  that  handle 
interactions between communication structures and other types of 
resources.  They  are  bus  arbiters,  decoders,  DMA  controllers, 
memory controller, bridges. Storage is dedicated memory arrays. 
In the context of SNG this distinction is important since each of 
them  will  have  different  conceptual  service  curves.  Namely, 
modules  like  processing  modules  or  communication  structures 
when pipelined, keep state information about different “jobs” in 
an interval of time (rate-latency functions). Other modules like 
communication controllers and storage are “stateless”, hence their 
service  curves  are  burst-delay  functions  (step  functions). 
Basically, the latter resources add delay to the data-flow without 
processing  them.  The  determination  of  those  latencies  have 
different  approaches  and  difficulties.  While  memory  and  bus 
transport  latencies  are  closely  related  to  the  physical 
implementation  themselves,  with  known  maximum  intervals, 
arbiter  latencies  vary  significantly,  even  for  the  same  master, 
depending  on  the  profile  of  data,  resources  in  the  micro-
architecture and  contention (bus arbiter latencies are stochastic). 
For  this  reason,  studying  the  behavior  of  these latencies  is  of 
great importance and in the present work, different latencies are 
modeled to analyze their impact in terms of delays, component 
utilization and buffer requirements. 

The order how resources are displayed is important and in 
Figure  4  they  are  disposed  in  a  way  that  easy  the  user 
comprehension of both micro-architecture and its dynamics.

Lines  in  SNG are  not  bound  to  time  but  to  the  order 
which  tasks  are  executed.  Tasks  (inherited  from  task  graph) 
executed  by  a  specific  resource  must  be  disposed  in  different 
lines.  Although different  tasks  executed  by  different  resources 
might be on different lines, they should preferably belong to the 
same. For a matter of reference, consecutive vertices are disposed 
on the same lineup to the right-most resource, with the next line 
vertices on the left-most resource for that given task. 

Each vertice in Figure 4 represents a specific task t being 
executed by the resource s. A task t has a weight w(s,t) associated 
to  the resource  and  can  be  measured  in  terms  of  cycles,  for 
example.  In  case  the  resource  is  a  bus,  w(s,t) represents  the 
number of cycles the transfer will take. In the case of a processor, 
it  measures  the  effort  in  cycles  realized  by  the  processor  to 
execute  that  task.  Each  vertice  has  associated  parameters  like 
arrival curves (4), service curves (4), resource, task and weight, 
as  graph  related  neighbors  (one  successor,  one  predecessor, 
maximum one inferior, maximum one superior). The graph does 
not  support  conditional  deviation,  since  it  is  a  worst  case 
deterministic  modeling  and  the  worst  case  condition  must  be 
considered in each vertice. Vertices sharing resources with  rate-
latency service curves inherit the remaining service curves from 
the immediately superior vertice. Other vertices sharing resources 
with  burst-delay  service  curves  doesn't  inherit  the  remaining 
service curves from the immediately superior  vertice since the 
remaining  service curve is  equal  to  the original  service curve. 
Successor vertices have the predecessors final arrival curves as 
incoming arrival curves.

4

Figure 4 - Detailed Scheduling Network Graph

PHY0 a

ð
arb

l

PHY1

e

b

c

d ð
dma0

ð
write

ð
arb

ðread f

g

h

i

j

ð
arb k

ð
write

ð
arb

ð
read

m

n

o

p

*

*

ð
dma1

M
A
C
0

M
A
C
1

D
M

A
0

D
M

A
1

M
e
m

o
ry

“µ
P
ro

c

A
rb

ite
r

B
us

 R
e
a
d

B
us

 W
ri
te

* Sideband signal

Figure 3 - Task graph and associated tasks

●Data Link Layer 2
● .a receive set of frames from PHY and checksums
● .b removes  preamble and sequences frames
● .c send ack to sender
● d. stores assembled packet in output FIFO
● e . Transmit buffer descriptor and  payload are written 

into memory

●Network Layer 3 (Internet Layer)
● f. processor reads buffer descriptor and 

 ip header from memory
● g.Check IP header
●.h Checks target IP
●.i IP destination

● j decrements TTL
● k IP header and receive buffer descriptor 

are written into memory
●.l IP packet (header e payload) and  

receive buffer descriptor are 
moved from memory to MAC

●Data Link Layer 2
● .m receives ack of frame from RCV
● .n generate frames frompacket
● .o inserts preamble
● .p  calculates  checksums from frames 
● . send frames to PHY

PHY0 a-d e-f g-j k-l m-p PHY1



For  each  resource  in  a  given  SNG,  the  most  superior 
vertice must be bound to a initial lower service curve and initial 
upper service curve. The very first vertice of this graph must be 
bound to  a  initial  lower  arrival  curve and initial  upper  arrival 
curve, as explained earlier. All other arrival and service curves, 
buffers,  latencies  and  utilization  rates  are  derived  using  the 
algebraic  methods  mentioned  in  the  previous  section.  After 
computation of the last vertice of resource, delays and resource 
utilizations in the system can be extracted, using equations (7)-
(9). If a more detailed study is needed, it is possible to evaluate 
latency,  buffer  and  utilization  for  each  vertice  in  the  SNG, 
exposing the requirements of each task. Albeit more computing 
time  is  required,  a  deeper  understanding  of  micro-architecture 
dynamics is achieved.

The  instant  information  about  each  packet  flow is  not 
concerned  in  arrival  curves,  but  the  lower  and  upper  rates, 
maximum packet size and maximum burst size. Hence, the whole 
flow is calculated on each vertice for that given task, thus making 
this approach extremely fast when compared to other simulation 
methods, at the same time, providing high levels of accuracy [4]. 

For a given flow, only one SNG need to be followed to 
obtain  the  values  formulated  in  (7)-(9),  making  this  a  non-
iterative  algorithm.  Different  flows  lead  to  different  arrival 
curves,  and  since  a  network  processor  usually  supports  many 
different  flows,  each  one  with  its  own  task  graph  and  SNG, 
hundreds  of  architecture  explorations  can  be  performed  in  a 
matter of minutes. 

The SNG represent information from micro-architecture 
shown in Figure 6 and from task graph shown in Figure 3 in a 
much more detailed way,  since the relations between different 
resources are exploited. 

SECTION IV – APPLIED SNG

In  this  section,  more  detailed  concepts  related to  bus and  bus 
arbiter  modeling  are  presented.  It  is  known  that  network 

processors have a very specific set of tasks, related to the network 

protocols they are implemented to support. Network processors 
can be represented  in a SNG as different flows of packets, each 
of them with different task order, in a preemptive fashion. In [1] 
it is shown that it is  algebraically advantageous gather different 
vertices pertaining to similar resources categories. As a result it is 
shown in Figure 5 the equivalent SNG. Another  work [3]  has 
adopted  the  latency  of  a  priority  based  arbiter  policy  as  a 
constant, which is a simplification that can reduce the fidelity of 
results, since arbitration policy may account for a significant part 
of end-to-end latency, as shown in Section V.

In  the  present  work,  three  bus  arbiter  policies  are 
modeled. In the first, named Two-Level [7], because it is TDMA 
and round robin,  a  variable  time  slot  with  sequenced  masters 
(without priority) arbiter policy is modeled. Each master has a 
specific  time  slot  interval  Tmaster-i granted  to  perform  bus 
operations and will have access granted again only after all other 
masters intervals have been spent, in a sequenced fashion. This is 
a non-priority based arbiter policy since all master have identical 
priorities. The arbiter latency ðarb  is constant and equal to the sum 
of each slot interval.. 

The second model is a hybrid bus arbiter policy since it 
grants  the  default  master  (the  one  with  highest  priority)  a 
maximum latency , after when  is has a bus request granted. In 
the worst case its latency will be the largest bus operation. This is 
because  there are no split bus operations. A two level bus arbiter 
policy is enforced for the other masters. 

The third model is the ideal case , and a zero bus arbiter 
latency is enforced for all bus operations.

Memory Write

The modeling of memory write is detailed in Figure 4 by 
vertices  [d-ðwrite].  A  certain  processing  module  (MAC,  for 
instance)  has data to write to memory and, through the DMA, 
awaits the bus arbiter to grant access to the memory, which is the 
slave. After an interval of time ðarb1, the access is granted to the 
DMA and words flow through bus write wires all the way into the 
memory array, where they are written. In a similar fashion, this 
process  takes  place  when  the  processor  needs  to  write  to  the 
memory.

Here  it  is  relevant  to  explain  the  meaning  of  each 
specific  vertice  in  SNG.  This  process  is  dependent  upon  a 
sideband signal between the DMA/MAC and the processor. MAC 
has an IP packet and a transmit buffer descriptor (TxBD) in its 
output buffer ready to be sent to memory via DMA. In the present 
case, DMA is implemented in RTL inside the MAC block, but 
the  representation  in  SNG  would  the  same  if  they  were  two 
different  blocks  built  apart.  DMA  has  a  latency  ðdma since 
different blocks and sub-blocks (like a MAC RX and MAC TX) 
are requesting read  (sideband signals) and write to the memory. 
These solicitations will be granted due to a policy implemented in 
DMA. Notice, however, that ðdma  comprises not only the time to 
apply the policy, but also the time it takes to grant access after a 
given request. That depends on many factors outside the DMA 
itself, like resource hazards and different arbiter policies. Here, 
there is only one MAC for each DMA, bringing a constant value 
for ðdma. The value of ðarb is dependent on bus arbiter policy.

After the DMA request for bus access has been granted, 
a  maximum latency  ðarb,  the  bus is  granted  and the data  flow 

5

Figure 5 - Condensed SNG optimized to reduce computing 
demand.

PHY0

l

PHY1

ea-d

f

g-j k

m-p

MAC0
MAC1

DMA0
DMA1

Mem
ory

“µP
roc

Arbi
ter

Bus 
Rea

d

Bus 
Write



between the  ports.  According to  the arbiter  policy,  latency is 
constant  (worst  case)  and  is  independent  of  the  many  factors 
outside the arbiter block itself, for example, the traffic between 
different blocks, IP packet sizes and resource hazards, to name a 
few. The time spent by the arbiter/decoder block to process the 
policy and grant access is also considered in ðarb. Since the slave 
must be free of performing operations for other masters, the time 
it takes from the write grant until it becomes idle again is Tmaster-i . 
The  total  amount  of  information  delivered  is  represented  by 
vertice “e”, which contains a rate-latency function of latency that 
equals to the time required by bus to effectively transfer data, and 
a slope that is a function of bus width and frequency.

The fact that those latencies are not dependent only on 
the block itself,  but more intense on outside factors, makes its 
analysis  extremely  important.  The  present  SNG  is  an  viable 
alternative to  study the influence of  this  latencies,  considering 
them constant between each other but with possibly different time 
slots intervals for each master.

The third latency represented in this operation, ðwrite, is 
the number of cycles it takes for memory to move data from the 
source port to arrays, which is a small cycle count, most likely 
two, since bus is pipelined, this latency is accounted only once 
per operation. After data is written in memory a sideband signal 
travels to the processor adverting it that some data is ready to be 
read. 

Memory Read

The modeling of memory read is detailed in Figure 3, 
from  sideband signal to vertice  g.   

After the processor has updated the IPv4 header and the 
transmit buffer descriptor (TxBD), or right after the payload and 
receive  buffer  descriptor  (RxBD)  have  been  written  into  the 
memory, a sideband signal is sent, either from the processor to 
MAC (former  case)  or  from MAC to  processor  (latter  case)  , 
which starts a read operation against the memory. 

First, the processor awaits the arbiter grant for a memory 
read operation. After maximum ðarb cycles, access is granted and 
it  takes  ðread cycles  to make the required data  available on the 
memory port and another “f” cycles to transfer the amount of data 
from memory port to processor cache controller port through the 
bus wires.  Processor then applies the modification to the  IPv4 
packet header and receive buffer descriptor (RxBD) and a new 
memory write operation is performed.

Modeling of components :

Network  processors  have  limited  scope  in  terms  of 
applications running on its generic programmable processor  or 
dedicated microengines. In the present case, an IPv4 forwarding 
application described in Figure 6 is running, providing  routing 
functionality. 

Fast  on-chip  local  RAM  is  modeled  as  an  infinite 
address space. After the SNG is analyzed, the total buffer actually 
used  is  known.  It  has  different  read  and  write  latencies  and 
accepts  read/write  calls  from DMA and processor,  stores  IPv4 
packet payloads and buffer descriptors. 

Bus Arbiter/decoder is modeled as latency only. There 
are  four  arbiter  calls  in  SNG:  DMA  requests  memory  write, 
processor  requests  memory  read,  processor  requests  memory 
write  and  DMA  requests  memory  read.  All  operations  have 
latency ðarb (dependent on the bus arbiter policy enforced). When 
the time slot expires, the next master must have access granted to 
the memory.  The optimization of  each  Tmaster-i  can be achieved 
with  the  help  of  IPv4  packet  sizes  collected  from  real  world 
flows. While DMAs read and writes the total IPv4 packet size 
and buffer descriptors, processors read and write only the IPv4 
header and buffer descriptor, which represent only a fraction of 
DMA transfers.

Bus is  pipelined and has  a  initial  setup latency and a 
transfer rate of bandwidth multiplied by bus frequency.

MAC and DMA are modeled as independent modules, 
being processing module and communication controller module, 
respectively and hence have a worst case processing cycles and 
throughput rate. 

SECTION V –  MODEL DETAILS, RESULTS AND 
ANALYSIS

The modeled micro-architecture  is  equivalent to that shown in 
Figure 6 above. Each MAC module is able to support 16 PHY 
circuits.  There  are  two  MAC  modules  compatible  with  IEEE 
802.3  and  802.3u  (CSMA/CD),  each  one  with  one  DMA 
controller integrated. All flows arrive on MAC0 and departs from 
MAC1.  During  experiments,  MAC  frequencies  vary 
appropriately  conforming  PHY frequency.  Bus  width  assumes 
32bits  and  64bits,  with  a  constant  80MHz  clock.  Processor 
frequency  is  200MHz.  Incoming  flow  rates  assume  50Mbps, 
100Mbps and 200Mbps, with packet sizes ranging from 256bytes 
to 1400 bytes. Buffer descriptors (both receive and transmit) have 
constant size equal to 8 bytes, and IPv4 packet headers have 20 
bytes of size. For each task, an appropriate number of cycles for 
the resource is adopted, and latency is proportional to resource 
frequency.  With these parameters,  lower and upper arrival and 
service curves are obtained. 

In  the  following  two  figures,  end-to-end  latencies  and 
memory requirements for the system described above are shown. 
Three bus arbiter policies, three different packet sizes and two 
different  bus widths  are  considered.  In  these two analysis,  the 
flow  and  MAC  capacity  are  raised  simultaneously.  Although 
these results are not compared against any simulation, the results 
are equivalent to those presented in [3] and [2] 

 

Given an increase in link transfer rate, latency tends to 
decrease for the same packet size, although for the same link, it 
raises with packet size, as seen on Figure 7 and 8 bellow.

6

Figure 6- Block diagram of modeled micro-architecture  
and associated service curves.

ð

RAM local
I$/D$

Memory Cntrl

PROM

Fast On­chip
Local RAM

                                         Pipelined Bus

RISC µp
(IF/DE/EX/ME/WB)
Inst­$ Data­$
I$/D$ Controller

DMA/MAC PHY
DMA/MAC

Arbiter/
Decoder

PHY
ð

ð

ð

ð

ð



It can be observed that for the 50Mbps case, for the same 
packet  size,  latencies  are  very  close  to  each  other,  but  the 
memory requirements almost double when the bus width doubles. 
This is because all other system components had their parameters 
kept constant, and each component will have to store more and 
more  data  in  each  of  their  internal  buffers  (internal 
accumulation).

In all cases, when changing bus width from 32b to 64b, 
for bus with two level and hybrid arbiter policy, a reduction in 
end-to-end latency is perceived, but for ideal bus arbiter policy, 
there is a sensible raise. This shows a relationship between bus 
arbiter policy and bus width. This happens because, in the ideal 
case there is no waiting for bus grants, it is more sensitive to the 
contention on each component due to the fact that they don have 
their  capacity  augmented.  Memory  requirements  also  change 
with bus arbiter policy, since for the same packet size, a smaller 
latency causes less contention on each component individually. 

The larger the workload on the system, the larger is the 
end-to-end  latency  resulting  from  the  raise  in  the  overall 
contention. This can be noticed by the greater difference among 
ideal arbiter latency and the other two, for the same packet size 
and bus width,  when comparing the results in Figure 7 and 8. 
This shows the importance of arbiter policy definition for systems 
under  heavy  workload.  The  proportion  between  ideal  arbiter 
latency and the other two almost doubled with the workload raise. 
Consequently, the bus arbiter policy can represent a bottleneck on 
the system. 

The overall effects are similar for different packet sizes, 
what shows that the system is reasonably balanced in respect to 
the internal transfers, since in this kind of application, outside the 
MAC  module,  only  buffer  descriptors  and  IPv4  headers  are 
actually processed.

7

Figure 7 - Latencies and buffer requirements. 16 incoming 
50Mbps flows for 2 50Mbps MACs supporting 16 PHY each

MAC:  50 Mbps
End-to-end latencies and memory requirements for three 

different bus arbiter policies, packet sizes and two bus widths.

2
5
6
B
/
ð
2
l
/
3
2
b

2
5
6
B
/
ð
h
y
b
/
3
2
b

2
5
6
B
/
ð
0
/
3
2
b

2
5
6
B
/
ð
2
l
/
6
4
b

2
5
6
B
/
ð
h
y
b
/
6
4
b

2
5
6
B
/
ð
0
/
6
4
b

5
1
2
B
/
ð
2
l
/
3
2
b

5
1
2
B
/
ð
h
y
b
/
3
2
b

5
1
2
B
/
ð
0
/
3
2
b

5
1
2
B
/
ð
2
l
/
6
4
b

5
1
2
B
/
ð
h
y
b
/
6
4
b

5
1
2
B
/
ð
0
/
6
4
b

1
4
0
0
B
/
ð
2
l
/
3
2
b

1
4
0
0
B
/
ð
h
y
b
/
3
2
b

1
4
0
0
B
/
ð
0
/
3
2
b

1
4
0
0
B
/
ð
2
l
/
6
4
b

1
4
0
0
B
/
ð
h
y
b
/
6
4
b

1
4
0
0
B
/
ð
0
/
6
4
b

0,00E+000
1,00E-005
2,00E-005
3,00E-005
4,00E-005
5,00E-005
6,00E-005
7,00E-005
8,00E-005
9,00E-005
1,00E-004
1,10E-004
1,20E-004

0,00E+000
2,00E-004
4,00E-004
6,00E-004
8,00E-004
1,00E-003
1,20E-003
1,40E-003
1,60E-003
1,80E-003
2,00E-003
2,20E-003
2,40E-003

← Latency 

Memory [MB] →

Figure 8 - Latencies and buffer requirements. 16 incoming 
100Mbps flows for 2 100Mbps MACs, supporting 16 PHY each.

2
5
6
B
/
ð
2
l
/
3
2
b

2
5
6
B
/
ð
0
/
3
2
b

2
5
6
B
/
ð
h
y
b
/
6
4
b

5
1
2
B
/
ð
2
l
/
3
2
b

5
1
2
B
/
ð
0
/
3
2
b

5
1
2
B
/
ð
h
y
b
/
6
4
b

1
4
0
0
B
/
ð
2
l
/
3
2
b

1
4
0
0
B
/
ð
0
/
3
2
b

1
4
0
0
B
/
ð
h
y
b
/
6
4
b

0,00E+000
5,00E-006
1,00E-005
1,50E-005
2,00E-005
2,50E-005
3,00E-005
3,50E-005
4,00E-005
4,50E-005
5,00E-005
5,50E-005
6,00E-005
6,50E-005
7,00E-005
7,50E-005

0,00E+000

1,00E-004

2,00E-004

3,00E-004

4,00E-004

5,00E-004

6,00E-004

7,00E-004

8,00E-004

9,00E-004

1,00E-003

1,10E-003

← Latency 

Memory [MB] →

MAC:  100 Mbps
End-to-end latencies and memory requirements for three

different bus arbiter policies, packet sizes and two bus widths



In Figure 9 end-to-end latency and memory requirements 
are estimated for a system under three different workloads. In this 
case, the MAC module supports 100Mbps, but that is under flows 

of 50Mbps, 100Mbps and 200Mbps with a constant packet size of 
256  bytes.  A distinctive  behavior  is  perceived  in  these results 
since latency tends increase due to greater component contention. 

Similar effects are repeated in this model, like the raise in 
arbiter latency for ideal policy when bus width changed from 32b 
to 64b. 

Under heavier workload, the benefit of 64b bus width is 
minimized due to the negative impact of bus arbiter policy (two 
levels and hybrid). It is noticeable that for ideal arbiter policy, the 
latency proportion between 32b and 64b for the three workloads 
is practically constant, however, this proportion is reduced for the 
other two policies. This effect happens to the memory in a similar 
fashion:  albeit  the  ideal  policy  requires  more  memory,  the 
proportion is constant; on the other side, the excess of workload 

requires more memory for the other two latency policies. 

SECTION VI – CONCLUSION

We have presented  an  enhancement  in  an  analytical  modeling 
technique that is capable of derive consistent results in respect of 
a  network  processor  dynamics,  allowing  the  analysis  of  many 
different  micro-architectures,  being  the  execution  time  of 
computation  in  the  order  of  a  few  seconds  on  a  Pentium  IV 
machine. 

Beyond that, we have shown that the detailed modeling 
of bus components and their relations is of great importance and 
possible through the use of this analytical technique, as shown in 
the results.

As future works, some enhancements to the model can 
be achieved, like the raise in the number of curve segments as 
well  as  the  simulation  of  micro-architectures  in  more  detailed 
levels,  in  order  to  confront  the  results  form analytical  models 
against simulation results.

REFERENCES 

[1] J.-Y. Le Boudec and P. Thiran.  Network Calculus - A 
Theory  of  Deterministic  Queuing  Systems  for  the  Internet. 
Lecture Notes in Computer Science 2050, Springer Verlag, 2001. 

[2] S. Chakraborty, S. KÂ¨unzli, L. Thiele, A. Herkersdorf, 
and P. Sagmeister. “Performance evaluation of network processor 
architectures: Combining simulation with analytical estimation.” 
Computer Networks, Elsevier, 41(5):641– 665, April 2003. 

[3] M.  Gries,  C.  Kulkarni,  C.  Sauer,  and  K.  Keutzer. 
“Comparing  analytical  modeling  with  simulation  for  network 
processors: A case study.” In  Proc. of the Designer’s Forum at 
the 6th Design, Automation and Test in Europe (DATE), Munich, 
Germany, March 2003.

[4] L. Thiele, S. Chakraborty, M. Gries, and S. KÂ¨unzli. 
“A  framework  for  evaluating  design  tradeoffs  in  packet 
processing  architectures.”  In  Proc.  39th  Design  Automation 
Conference  (DAC),  pages  880–885,  New  Orleans,  LA,  June 
2002. ACM Press. 

[5] L. Thiele, S. Chakraborty, M. Gries, and S. KÂ¨unzli. 
“Design space exploration of network processor architectures.” In 
Crowley  et  al.  [48],  chapter  4,  pages  55–90.  A  preliminary 
version  of  this  paper  appeared  in  the  Proc.  1st  Workshop  on 
Network  Processors,  held  in  conjunction  with  the  8th 
International  Symposium  on  High-Performance  Computer 
Architecture, Cambridge, Massachusetts, 2002. 

[6] T. Wolf, M.A. Franklin, and E.W. Spitznagel. “Design 
tradeoffs  for  embedded  network processors.”  Technical  Report 
WUCS-00-  4,  Department  of  Computer  Science,  Washington 
University in St. Louis, 2000.

[7] Conti,  M., Caldari,  M.,  Vece, G. B.,  Orcioni, S.,  and 
Turchetti, C. 2004. “Performance analysis of different arbitration 

8

5
0
M
b
p
s
/
ð
2
l
/
3
2
b

5
0
M
b
p
s
/
ð
h
y
b
/
3
2
b

5
0
M
b
p
s
/
ð
0
/
3
2
b

5
0
M
b
p
s
/
ð
2
l
/
6
4
b

5
0
M
b
p
s
/
ð
h
y
b
 
/
6
4
b

5
0
M
b
p
s
/
ð
0
/
6
4
b

1
0
0
M
b
p
s
/
ð
2
l
/
3
2
b

1
0
0
M
b
p
s
/
ð
h
y
b
/
3
2
b

1
0
0
M
b
p
s
/
ð
0
/
3
2
b

1
0
0
M
b
p
s
/
ð
2
l
/
6
4
b

1
0
0
M
b
p
s
/
ð
h
y
b
 
/
6
4
b

1
0
0
M
b
p
s
/
ð
0
/
6
4
b

2
0
0
M
b
p
s
/
ð
2
l
/
3
2
b

2
0
0
M
b
p
s
/
ð
h
y
b
/
3
2
b

2
0
0
M
b
p
s
/
ð
0
/
3
2
b

2
0
0
M
b
p
s
/
ð
2
l
/
6
4
b

2
0
0
M
b
p
s
/
ð
h
y
b
 
/
6
4
b

2
0
0
M
b
p
s
/
ð
0
/
6
4
b

6,00E-006

7,00E-006

8,00E-006

9,00E-006

1,00E-005

1,10E-005

1,20E-005

1,30E-005

1,40E-005

1,50E-005

1,60E-005

1,70E-005

0,00E+000

2,00E-005

4,00E-005

6,00E-005

8,00E-005

1,00E-004

1,20E-004

1,40E-004

1,60E-004

1,80E-004

2,00E-004

2,20E-004

2,40E-004

2,60E-004

MAC: 100 Mbps
End-to-end latencies and memory requirements for three different incoming flows, 

bus arbiter policies and  two bus widths.

← Latency [s]

Memory [MB] → 

Figure 9 - Latencies and buffer requirements for 100Mbps MAC. 
Packet size is 256bytes, and flows are 50Mbps, 100Mbps,  
200Mbps.



algorithms of the AMBA AHB bus.” In Proceedings of the 41st 
Annual  Conference  on  Design  Automation  (San  Diego,  CA, 
USA, June 07 - 11, 2004). DAC '04. ACM Press, New York, NY, 
618-621.

[8] M. Sakamoto, A. Katsuno, A. Inoue,  T. Asakawa,  H. 
Ueno,  K.  Morita,  Y.   Kimura  ;"Microarchitecture  and 
performance  analysis  of  a  SPARC-V9  microprocessor  for  
enterprise  server systems" The Ninth International Symposium 
on  High-Performance  Computer  Architecture,  HPCA-9;  8-12 
Fev. 2003 página(s):141 - 152 .

[9] Yung Chia Lin; Chung Wen Huang; Jenq Kuen Lee; 
“System-level  design  space  exploration  for  security  processor 
prototyping  in  analytical  approaches”  Design  Automation 
Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and 
South Pacific Volume 1,  18-21 Jan. 2005 Page(s):376 - 380 Vol. 
1

9


