
DESIGN AND PERFORMANCE EVALUATION OF A CACHE

CONSISTENT NOC-BASED MP-SOC

Gustavo Girão
1
, Bruno Cruz de Oliveira

1
, Rodrigo Soares

2
, Ivan Saraiva Silva

1

1
Departamento de Informática e Matemática Aplicada – UFRN, Brazil

2
Escola Politécnica – USP, Brazil

{girao, bcruz}@natalnet.br, rodsoares@gmail.com, ivan@dimap.ufrn.br

ABSTRACT

With the increasing complexity of current applications

and the processors reaching its physical speed limit the

most feasible solution to increase the processing power

of a computational system is parallelism. Recent

researches have integrated several processors in a single

chip. This new technology is called Multiprocessor

System-on-chip (MP-SoC). This paper presents the

SystemC implementation of a complete MP-SoC

platform called STORM. The platform integrates a Sparc

V8 processor, a Cache module, a Directory module for

cache coherence maintenance, a Memory module and

mesh-based NoC. These modules are presented in

details, as also the cache coherence mechanism and the

NoC models. The platform can run applications written

in C and compiled with Sparc-gcc cross-compiler. To

analyses the STORM performance this paper presents the

simulation results of two, including a parallel JPEG

implementation.

1. INTRODUCTION

The complexity of current systems grows pushed by the

crescent demands of applications, especially multimedia.

Technology provides an unprecedented integration

capacity, culminating with the creation of Systems-on-

Chip (SoCs). On the other hand, despite of that, the time-

to-market of new products decreases gradually. The

combination of these two facts leads system designers to

a challenge hard to overcome: the design of complex

systems within a limited period of time. A popular

approach to face this challenge is the concept of

platform-based design, used in conjunction with

components reuse. A platform can be generically defined

as a high abstraction level model that covers possible low

level refinements [1].

Another important trend in current system design is

the design space exploration. Due to the complexity of

current systems there are so many variables to be taken

into account, that it is hard to find a good balance point

among performance, on-chip area and power

consumption. The decision of a satisfactory result might

need several simulations and adjustments in the project.

The use of platform-based design can clearly reduce the

costs of design space exploration. As a solution for a

better and fast design space exploration it is desirable to

have a hardware design language that allows a high

abstraction level. To attend this need, in 1999 it was

announced the OSCI, and released the first SystemC [2]

version. SystemC allows the modeling of a RTL system

starting from a pure C/C++ code, through a series of

refinements in the code, such as insertion of timing and

synchronization and separation between hardware and

software functionalities [3] (top-down methodology).

This paper presents the SystemC design of a

complete MP-SoC platform, using the methodology

described above (the combination of top-down and

bottom-up methodology). All of its components were

implemented in a cycle-accurate SystemC. The platform

consists of the SPARC V8 microprocessor, a Cache

module (DCache and ICache), a Network-on-Chip

model, a Directory module for cache coherence

maintenance, and a Memory module. For programming

the platform the C language can be directly used through

the Sparc-gcc cross-compiler.

This paper is divided as follows: Section 2 presents

an overview of current use of SystemC to MP-SoC

implementation and simulation; the implemented

platform’s features are presented in Section 3; in Section

4 there are some results about the platform concerning

about cycles per instruction and average buffer

occupation; and finally the conclusions are presented in

Section 5, followed by the references.

2. RELATED WORKS

Current commercially available MP-SoCs are

heterogeneous bus based application-specific on-Chip

platforms, containing some couple cores. Most

noticeably are: Intel’s network specific IXP2850 [4];

ST’s Nomadik, for mobile multimedia applications,

based in an ARM9 processor [5] and Texas Intrument’s

OMAP [6], for wireless applications. Those platforms

must work under area, energy consumption and real-time

performance constraints.

However the combination of hundreds cores

integration capability and parallel and concurrent

software design, including NoC integration, Operating

System support (race condition avoidance) and cache

coherence, are not yet a reality. In [7] some of this

software issues are included but considering a bus based

platform. Some co-simulation (using an Instruction-Set

Simulator and a SystemC implementation of a bus)

papers have been presented, as in [8] and [9],

methodology of high-level refinements is presented in [3]

and an ASIC is used as an example. This work aims to

provide a NoC based MP-SoC platform with coche

consistency support. This platform will be used to MP-

SoC design space exploration and programming model

research.

3. THE STORM PLATFORM

3.1.Overview

STORM (MP-SoC DirecTory-Based PlatfORM) is a

customizable Multi-Processor System-on-Chip (MP-

SoC) platform, designed to support up to 256 cores. Its

objectives are to produce a real and fully functional MP-

SoC platform, actually running binary compiled codes of

complete applications written in a high level language (C

language), and able to provide a set of results, especially

useful in design-space exploration. These results regard

microprocessor execution, NoC communication and

memory hierarchy overhead. Currently, on-chip area and

power consumption results are not given, but we expect

to include those by using the proper tools and estimation

techniques [10].

Since it is a platform, STORM does not possess a

fixed architecture. Its supported cores can be placed

anywhere in the NoC, and its architecture is identified

during the boot process. Currently, STORM supports the

integration of SPARC V8 processor plus a Cache module

(DCache and ICache); and Memory module plus its

associated Directory module, as seen in figure 1. Any

other SystemC module can be placed in STORM, as long

as it follows its standard NoC communication protocol.

The NoC model, NoCX4 (Mesh/Torus topology) [11]

follows this protocol.

All Memory modules instantiated form a single

address space, which makes STORM a Shared Memory

environment. This way, running processes communicate

via shared variables (global variables), and synchronize

via mutexes. The mutexes were implemented in a C

library using the SPARC’s LDSTUB and SWAP

instructions to perform Test-and-Set operation. Cache

coherence is attained by using the directory cache

coherence protocol, implemented in the Directory

module.

3.2.Cache Coherence

Currently STORM has a directory based mechanism to

Figure 1. STORM Modules and their integration.

maintain coherence among all caches in the system. The

cache coherence problem could be easily solved in a bus-

based system, by using the snoop protocol [12]. The

implementation of snoop protocol in a NoC is not

impossible, but it would represent a costly

communication overhead, due to the necessary broadcast

in every memory access. Therefore, a feasible choice is

the directory protocol, which centralizes all information

about memory accesses [13]. To facilitate the control

over memory’s positions and to lessen the memory

overhead incurred by the use of a Directory, the memory

is divided in blocks. These blocks have configurable

size, but it is always the same size of cache’s blocks.

Each Memory Module in STORM has a Directory

module that manages its NoC communication and cache

coherence. It has information on the status of all blocks

in that memory (clean or dirty) and the processors that

currently have copies of the block.

STORM uses Dirn NB Directories, meaning it

requires n+1 bits per block in the memory to store its

status, where n is the number of processor cores in the

platform [13]. That memory bits overhead is necessary

so every processor can have a copy of the block.

To store the block status information, the directory

uses two tables: a Status TAble (STA) and a Processor

TAble (PTA). The STA contains information concerning

all blocks in that memory. The PTA contains the NoC

address of all active processors in the system. The STA

is composed of a bit matrix. Every row in the table has

information concerning one memory block. The Dirty bit

indicates if that particular block is dirty (i.e. was

modified and not updated to memory) or not. The other

bits indicate which processors have a copy of that block.

A dirty block will only have one copy. Notice that the

STA alone has no information on where in the NoC are

the processors with the block copies. For that, it is

necessary that the directory has another table with

processor’s NoC address, the PTA. The PTA and STA

were implemented as dedicated memories of the

Directory module, no system memory accesses are

necessary.

The Cache module has a Cache Communication

Manager (CaCoMa), which performs the cache/NoC

router communication. The CaCoMa has a virtual

address to physical address translation table, ATA

(Address TAble), so the CaCoMa can calculate the

correct destination of a memory access. Both Directory’s

PTA and CaCoMa’s ATA are mounted during boot

process. The STA varies according to the system’s

behavior, the PTA is static. The Address Table is also

implemented as dedicated memory of the CaCoMa.

The results of cache coherence are presented in the

next section.

3.3. Interconnection

STORM uses Network-on-Chip for modules’

interconnection. The NoC model implemented was the

NoCX4, a mesh/torus topology. NoCx4 uses VCT

switching, credit-based flow control, RR (Round-Robin)

or FCFS (First-Come First-Served) arbitration and size

configurable FIFO (First-In First-Out) buffering and uses

dimensional routing.

4. RESULTS

Table 1 shows minimum costs in cycles for Cache

operations. These numbers has been obtained using a

platform configuration (figure 2) with two processors and

three memories. On this configuration, each processor

has its own local variables (non-shared) stored in the

memory on the right and on the left (for the processor on

the right and the one on the left, respectively). Shared

data has been stored in the memory located in the center

of the configuration so each processor is located at the

same distance from this memory. Applications running

on the processors in the configuration above explained

were written in such way that guarantee minimal costs

without any NoC traffic issues.

Following are presented the results about two

simulations over the platform. The running applications

were the well-known Mergesort algorithm and a JPEG

encoder. The platform configuration used in these

simulations are presented in figure 3 (a and b,

respectively).

The first aspect analyzed is the number of cycles per

instruction (CPI). The equation used to calculate this

value is shown in figure 4 [14]. Figure 5 presents the CPI

for Mergesort and JPEG applications. Has been used

simulations for several DCache different sizes varying

form 32 bytes to 64 Kbytes.

Both simulations indicate that the number of cycles

per instruction decreases with the increase of cache size.

This occurs because with a larger size of DCache, the

number of cache coherence maintenance packets in the

NoC decrease and hence, the number of cycles to

complete a read or write operation also decreases. The

limit to this behavior is find ins a 512 bytes cache.

The behavior of CPI according with the number of

processors has also been analyzed. Figure 6 presents the

CPI versus processors number to the Mergesort

application considering a cache of 512 bytes. It is

possible to realize that the CPI increases with the number

of processors. This is due to the fact that with more

processor there is more competition for a shared data and

Figure 2. Configuration used to obtain minimum costs.

Table 1. Minimum costs.

Operation NocX4 Obtree

Read Hit 1 1

Read Miss Clean 36 30

Read Miss Dirty 61 49

Write Hit with Permission 1 1

Write Hit without Permission 27 21

Write Miss Clean 36 30

Write Miss Dirty 60 48

Figure 3. Configurations used in a)Mergesort and b)JPEG

Figure 4. Cycles per Instruction equation.

Figure 5. CPI vs. Cache size.

so the number of cache coherence maintenance packets

increases.

Another important feature to be analyzed is the

average occupation of Directory and Cache receiving

buffers. The figures 7 and 8 show the average occupation

of Directory and DCache buffers (respectively), using the

Mergsort application and several DCache sizes. From

these figures is possible to conclude that the average

Figure 6. CPI vs. Number of processors.

Figure 7. Average Directory buffer occupation (Mergesort).

buffer occupation strongly increases with a larger

DCache size. This is due to the decrease of the number

of read and writes request sent to the Directory. It is also

important to realize that the average buffer occupation on

DCache is way smaller than the average buffer

occupation on Directory. This observation can be

explained by the fact that this cache coherence

maintenance solution centralizes all the requests on the

Directory module.

5. CONCLUSIONS

This paper presented the design and implementation of a

MP-SoC platform that uses a network-on-chip as

interconnection mechanism. STORM platform adopts a

directory-based solution for the cache coherence

problem. The platform was developed using the SystemC

hardware description language for a better and faster

design space exploration. Also in this paper was

presented a set of simulations of well-known algorithms

exposing aspects of latency of cache operations, cycles

per instruction and average buffer occupation on each

simulation.

About the simulations is possible to conclude that

the directory solution do not represent a great overhead

in terms of buffer occupation and has a regular behavior

on the number of cycles per instructions starting in an

specific size of cache.

Figure 8. Average Cache buffer occupation (Mergesort).

6. REFERENCES

 [1] A. Sangiovanni-Vincentelli, G. Martin; Platform-based

design and software design methodology for embedded

systems; Design & Test of Computers, IEEE Volume 18, Issue

6, pp. 23 – 33, Nov.-Dec. 2001.

[2] Open SystemC Initiative (OSCI), Functional Specification

for SystemC 1.0, 1999.

[3] F. Abbes; E. Casseau; M. Abid; “SoC Design Case Study

Using SystemC Specifications”, ICM03, 15th International

Conference on Microelectronics, December 2003.

[4] Intel, “Product Brief: Intel IXP2850 Network Processor,”

2002.

[5] A. Artieri; et al; “NomadikTM Open Multimedia Platform

for Next-generation Mobile Devices”, STMicroelectronics

Technical Article TA305, 2003.

[6] J. Helmig; “Developing core software technologies for TI’s

OMAPTM platform” Texas Instruments, 2002.

[7] L. Benini; et al; “MPARM: Exploring the Multi-Processor

SoC Design Space with SystemC” The Journal of VLSI Signal

Processing, 41(2): 169 – 182, September 2005.
[8] L. Benini; et al; “SystemC Cosimulation and Emulation of

Multiprocessor SoC Designs”, IEEE Computer 36, April 2003.

[9] F. Fummi; et al; “Native ISS-SystemC Integration for Co-

Simulation of Multi-Processor SoC” Design, Automation and

Test in Europe (DATE), Proceedings, 2004.

[10] S. Niar; S. Metfali; J.L. Dekeyser, “Power Consumption

Awareness in Cache Memory Design with SystemC”,

International Conference on Microelectronics (ICM), 2004.

[11] R. Soares , I.S., Silva, A. Azevedo, “When

Reconfigurable Architecture Meets Network-on-Chip”, 17th

Symposium on Integrated Circuits and Systems Design, pp.

216 – 221, 2003.

[12] A. S. Tanenbaum; Structured Computer Organization, 4th

edition; Prentice Hall, 1999-2000.

[13] K. Hwang “Advanced Computer Architecture:

Parallelism, Scalability, Programmability” McGraw-Hill, Inc.

1993.

[14] F. Pétrot, A. Greiner, P. Gomez, “On Cache Coherency

and Memory Consistency Issues in NoC Based Shared

Memory Multiprocessor SoC Architectures”, 9th

EUROMICRO Conference on Digital System Design, pp. 53-

60, 2006.

