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ABSTRACT 

 

With the increasing complexity of current applications 

and the processors reaching its physical speed limit the 

most feasible solution to increase the processing power 

of a computational system is parallelism. Recent 

researches have integrated several processors in a single 

chip. This new technology is called Multiprocessor 

System-on-chip (MP-SoC).  This paper presents the 

SystemC implementation of a complete MP-SoC 

platform called STORM. The platform integrates a Sparc 

V8 processor, a Cache module, a Directory module for 

cache coherence maintenance, a Memory module and 

mesh-based NoC. These modules are presented in 

details, as also the cache coherence mechanism and the 

NoC models. The platform can run applications written 

in C and compiled with Sparc-gcc cross-compiler. To 

analyses the STORM performance this paper presents the 

simulation results of two, including a parallel JPEG 

implementation. 

 

1. INTRODUCTION 

 

The complexity of current systems grows pushed by the 

crescent demands of applications, especially multimedia. 

Technology provides an unprecedented integration 

capacity, culminating with the creation of Systems-on-

Chip (SoCs). On the other hand, despite of that, the time-

to-market of new products decreases gradually. The 

combination of these two facts leads system designers to 

a challenge hard to overcome: the design of complex 

systems within a limited period of time. A popular 

approach to face this challenge is the concept of 

platform-based design, used in conjunction with 

components reuse. A platform can be generically defined 

as a high abstraction level model that covers possible low 

level refinements [1].  

Another important trend in current system design is 

the design space exploration. Due to the complexity of 

current systems there are so many variables to be taken 

into account, that it is hard to find a good balance point 

among performance, on-chip area and power 

consumption. The decision of a satisfactory result might 

need several simulations and adjustments in the project. 

The use of platform-based design can clearly reduce the 

costs of design space exploration. As a solution for a 

better and fast design space exploration it is desirable to 

have a hardware design language that allows a high 

abstraction level. To attend this need, in 1999 it was 

announced the OSCI, and released the first SystemC [2] 

version. SystemC allows the modeling of a RTL system 

starting from a pure C/C++ code, through a series of 

refinements in the code, such as insertion of timing and 

synchronization and separation between hardware and 

software functionalities [3] (top-down methodology).  

This paper presents the SystemC design of a 

complete MP-SoC platform, using the methodology 

described above (the combination of top-down and 

bottom-up methodology). All of its components were 

implemented in a cycle-accurate SystemC. The platform 

consists of the SPARC V8 microprocessor, a Cache 

module (DCache and ICache), a Network-on-Chip 

model, a Directory module for cache coherence 

maintenance, and a Memory module. For programming 

the platform the C language can be directly used through 

the Sparc-gcc cross-compiler. 

This paper is divided as follows: Section 2 presents 

an overview of current use of SystemC to MP-SoC 

implementation and simulation; the implemented 

platform’s features are presented in Section 3; in Section 

4 there are some results about the platform concerning 

about cycles per instruction and average buffer 

occupation; and finally the conclusions are presented in 

Section 5, followed by the references. 

 

2. RELATED WORKS 

 

Current commercially available MP-SoCs are 

heterogeneous bus based application-specific on-Chip 

platforms, containing some couple cores. Most 

noticeably are: Intel’s network specific IXP2850 [4]; 

ST’s Nomadik, for mobile multimedia applications, 

based in an ARM9 processor [5] and Texas Intrument’s 

OMAP [6], for wireless applications. Those platforms 



must work under area, energy consumption and real-time 

performance constraints. 

However the combination of hundreds cores 

integration capability and parallel and concurrent 

software design, including NoC integration, Operating 

System support (race condition avoidance) and cache 

coherence, are not yet a reality. In [7] some of this 

software issues are included but considering a bus based 

platform. Some co-simulation (using an Instruction-Set 

Simulator and a SystemC implementation of a bus) 

papers have been presented, as in [8] and [9], 

methodology of high-level refinements is presented in [3] 

and an ASIC is used as an example. This work aims to 

provide a NoC based MP-SoC platform with coche 

consistency support. This platform will be used to MP-

SoC design space exploration and programming model 

research. 

 

3. THE STORM PLATFORM 

 

3.1.Overview 

STORM (MP-SoC DirecTory-Based PlatfORM) is a 

customizable Multi-Processor System-on-Chip (MP-

SoC) platform, designed to support up to 256 cores. Its 

objectives are to produce a real and fully functional MP-

SoC platform, actually running binary compiled codes of 

complete applications written in a high level language (C 

language), and able to provide a set of results, especially 

useful in design-space exploration. These results regard 

microprocessor execution, NoC communication and 

memory hierarchy overhead. Currently, on-chip area and 

power consumption results are not given, but we expect 

to include those by using the proper tools and estimation 

techniques [10]. 

Since it is a platform, STORM does not possess a 

fixed architecture. Its supported cores can be placed 

anywhere in the NoC, and its architecture is identified 

during the boot process. Currently, STORM supports the 

integration of SPARC V8 processor plus a Cache module 

(DCache and ICache); and Memory module plus its 

associated Directory module, as seen in figure 1. Any 

other SystemC module can be placed in STORM, as long 

as it follows its standard NoC communication protocol. 

The NoC model, NoCX4 (Mesh/Torus topology) [11] 

follows this protocol. 

All Memory modules instantiated form a single 

address space, which makes STORM a Shared Memory 

environment. This way, running processes communicate 

via shared variables (global variables), and synchronize 

via mutexes. The mutexes were implemented in a C 

library using the SPARC’s LDSTUB and SWAP 

instructions to perform Test-and-Set operation. Cache 

coherence is attained by using the directory cache 

coherence protocol, implemented in the Directory 

module. 

 

 

3.2.Cache Coherence 

Currently STORM has a directory based mechanism to 

 
Figure 1. STORM Modules and their integration. 

 

maintain coherence among all caches in the system. The 

cache coherence problem could be easily solved in a bus-

based system, by using the snoop protocol [12]. The 

implementation of snoop protocol in a NoC is not 

impossible, but it would represent a costly 

communication overhead, due to the necessary broadcast 

in every memory access. Therefore, a feasible choice is 

the directory protocol, which centralizes all information 

about memory accesses [13]. To facilitate the control 

over memory’s positions and to lessen the memory 

overhead incurred by the use of a Directory, the memory 

is divided in blocks. These blocks have configurable 

size, but it is always the same size of cache’s blocks. 

Each Memory Module in STORM has a Directory 

module that manages its NoC communication and cache 

coherence. It has information on the status of all blocks 

in that memory (clean or dirty) and the processors that 

currently have copies of the block. 

STORM uses Dirn NB Directories, meaning it 

requires n+1 bits per block in the memory to store its 

status, where n is the number of processor cores in the 

platform [13]. That memory bits overhead is necessary 

so every processor can have a copy of the block. 

To store the block status information, the directory 

uses two tables: a Status TAble (STA) and a Processor 

TAble (PTA). The STA contains information concerning 

all blocks in that memory. The PTA contains the NoC 

address of all active processors in the system. The STA 

is composed of a bit matrix. Every row in the table has 

information concerning one memory block. The Dirty bit 

indicates if that particular block is dirty (i.e. was 

modified and not updated to memory) or not. The other 

bits indicate which processors have a copy of that block. 

A dirty block will only have one copy. Notice that the 

STA alone has no information on where in the NoC are 

the processors with the block copies. For that, it is 

necessary that the directory has another table with 

processor’s NoC address, the PTA. The PTA and STA 

were implemented as dedicated memories of the 

Directory module, no system memory accesses are 

necessary. 

The Cache module has a Cache Communication 

Manager (CaCoMa), which performs the cache/NoC 

router communication. The CaCoMa has a virtual 

address to physical address translation table, ATA 



(Address TAble), so the CaCoMa can calculate the 

correct destination of a memory access. Both Directory’s 

PTA and CaCoMa’s ATA are mounted during boot 

process. The STA varies according to the system’s 

behavior, the PTA is static. The Address Table is also 

implemented as dedicated memory of the CaCoMa.  

The results of cache coherence are presented in the 

next section. 

 

3.3. Interconnection 

STORM uses Network-on-Chip for modules’ 

interconnection. The NoC model implemented was the 

NoCX4, a mesh/torus topology. NoCx4 uses VCT 

switching, credit-based flow control, RR (Round-Robin) 

or FCFS (First-Come First-Served) arbitration and size 

configurable FIFO (First-In First-Out) buffering and uses 

dimensional routing.  

 

4. RESULTS 

 

Table 1 shows minimum costs in cycles for Cache 

operations. These numbers has been obtained using a 

platform configuration (figure 2) with two processors and 

three memories. On this configuration, each processor 

has its own local variables (non-shared) stored in the 

memory on the right and on the left (for the processor on 

the right and the one on the left, respectively). Shared 

data has been stored in the memory located in the center 

of the configuration so each processor is located at the 

same distance from this memory. Applications running 

on the processors in the configuration above explained 

were written in such way that guarantee minimal costs 

without any NoC traffic issues. 

Following are presented the results about two 

simulations over the platform. The running applications 

were the well-known Mergesort algorithm and a JPEG 

encoder. The platform configuration used in these 

simulations are presented in figure 3 (a and b, 

respectively).  

The first aspect analyzed is the number of cycles per 

instruction (CPI). The equation used to calculate this 

value is shown in figure 4 [14]. Figure 5 presents the CPI 

for Mergesort and JPEG applications. Has been used 

simulations for several DCache different sizes varying 

form 32 bytes to 64 Kbytes. 

Both simulations indicate that the number of cycles 

per instruction decreases with the increase of cache size. 

This occurs because with a larger size of DCache, the 

number of cache coherence maintenance packets in the 

NoC decrease and hence, the number of cycles to 

complete a read or write operation also decreases. The 

limit to this behavior is find ins a 512 bytes cache. 

The behavior of CPI according with the number of 

processors has also been analyzed. Figure 6 presents the 

CPI versus processors number to the Mergesort 

application considering a cache of 512 bytes. It is 

possible to realize that the CPI increases with the number 

of processors. This is due to the fact that with more 

processor there is more competition for a shared data and 

 
Figure 2. Configuration used to obtain minimum costs. 

 
Table 1. Minimum costs. 

Operation NocX4 Obtree 

Read Hit 1 1 

Read Miss Clean 36 30 

Read Miss Dirty 61 49 

Write Hit with Permission 1 1 

Write Hit without Permission 27 21 

Write Miss Clean 36 30 

Write Miss Dirty 60 48 

 

 
Figure 3. Configurations used in a)Mergesort and b)JPEG 

 

 
Figure 4. Cycles per Instruction equation. 

 

 
Figure 5. CPI vs. Cache size. 

 

so the number of cache coherence maintenance packets 

increases.  

Another important feature to be analyzed is the 

average occupation of Directory and Cache receiving 

buffers. The figures 7 and 8 show the average occupation 

of Directory and DCache buffers (respectively), using the 

Mergsort application and several DCache sizes. From 

these figures is possible to conclude that the average  



 
Figure 6. CPI vs. Number of processors. 

 

 

Figure 7. Average Directory buffer occupation (Mergesort). 

buffer occupation strongly increases with a larger 

DCache size. This is due to the decrease of the number 

of read and writes request sent to the Directory. It is also 

important to realize that the average buffer occupation on 

DCache is way smaller than the average buffer 

occupation on Directory. This observation can be 

explained by the fact that this cache coherence 

maintenance solution centralizes all the requests on the 

Directory module.  

 
5. CONCLUSIONS 

 

This paper presented the design and implementation of a 

MP-SoC platform that uses a network-on-chip as 

interconnection mechanism. STORM platform adopts a 

directory-based solution for the cache coherence 

problem. The platform was developed using the SystemC 

hardware description language for a better and faster 

design space exploration. Also in this paper was  

presented a set of simulations of well-known algorithms 

exposing aspects of latency of cache operations, cycles 

per instruction and average buffer occupation on each 

simulation.  

About the simulations is possible to conclude that 

the directory solution do not represent a great overhead 

in terms of buffer occupation and has a regular behavior 

on the number of cycles per instructions starting in an 

specific size of cache.  

 

Figure 8. Average Cache buffer occupation  (Mergesort). 
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