

Synthesis of Concurrent Asynchronous State Machines

 Using Extended Multi-Burst Graph Specification

Duarte Lopes de Oliveira1 Marius Strum2 Fabio Durante Pereira Alves1
Jéfferson Perez R. Costa3 Wang Jiang Chau2

1Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica – IEEA – ITA
duarte@ita.br durante@ita.br

Praça Marechal Eduardo Gomes, 50 – CEP 12228-900 – São José dos Campos – SP – Brazil
2Laboratório de Microeletrônica da Escola Politécnica da USP

strum@lme.usp.br jcwang@lme.usp.br
Av. Prof. Luciano Gualberto, Trav 3, 158 – CEP 05508-900 – São Paulo – SP – Brazil

3Departamento de Engenharia de Computação e Telecomunicações da Universidade Católica de Santos
perez@unisantos.br

Av. Conselheiro Nébias, 300 – CEP 11015-002 – Santos – SP – Brazil

Abstract
Extended Huffman machines implemented with basic
gates present an optimum latency time and only use the
standard-cell technology. Due to the limitations of the
existent synthesis methods for asynchronous controllers,
these machines are only used for applications where there
is limited concurrence between inputs and outputs (I/O
concurrence). In these cases, the interaction with the
environment happens in the generalized fundamental
mode (GFM). This limitation degrades the performance.
In this paper we propose an extension of the multi-burst
graph specification (MBG) called of extended multi-burst
graph (XMBG) that describes asynchronous finite state
machines that present a limited amount of I/O
concurrence. We also propose a method that synthesizes
such controllers as hazard-free extended Huffman
machines. Our results show that the XMBG specification
was able to describe a few known benchmarks used in
interface controller. The experimental results show that
there is an area and a latency time improvement for our
solution compared to the solutions coming from the
Petrify synthesis tool when synthesizing the SoP+latchC
architecture. Both solutions require only a standard cell
library for their physical implementation.

1 - INTRODUCTION
The modern digital systems complexity and the necessity
of performance improvement has been driven
considerable interest in asynchronous design [1]. One
promising application area is in Heterogeneous Systems
(synchronous and asynchronous mixed modules) [7,8,9].
The behavior of such circuits can be represented as a
Signal Transition Graph (STG) [4]. STG is a Petri-net
description. Signal transitions describe events. The
strength of STG is to describe concurrence between inputs
and outputs (I/O concurrence) that occur in heterogeneous
systems. However, the larger the number of signals or if
there are decisions involving level sensitive signals –
(LSS signals) the description becomes very confusing.

Furthermore, this type of description may explode in the
size [2,3,10].
Petrify1 [10] is a known synthesis tool that starts from an
STG and implements timed controllers2 using two types
of architecture: sum-of-products + latch C (SoP+latchC)
or complex gates [10]. The resulting circuits obey the
bounded gate and wire delay model and operate according
to the generalized fundamental mode (GFM). Complex
gates present optimal area and latency time at the expense
of a full custom design. SoP+latchC present lower latency
time and larger area but require only a standard cell
solution [5,6,10].

On the other hand, burst mode specification (BM, XBM)
solves the problems related to the STG description but is
very limited to describe I/O concurrency [5,6]. It is the
natural description of finite state machines3.
One type of burst mode specification is the multi-burst
graph (MBG). It accepts all signals types of the XBM
specification and introduces burst operators that allow
the description a limited amount of I/O concurrency.
There are three types of operators: input burst OR,
transition concurrence (CO) and transition sequence
(SEQ) [5,6].
We propose an extended version of the MBG (XMBG)
that further increases the I/O concurrency allowing the
combination of the CO and the SEQ operators.

In this work we explain the XMBG specification and show
that it may be used to synthesize hazard-free
asynchronous controllers as an extended Huffman
machine composed exclusively on basic gates [1,7,8].
Such a solution present nice area and latency time
properties when compared to the SOP+latchC solution

1 This tool also implements SI controllers.
2 These controllers operate in the I/O mode and they obey
the model bounded gate and wire delay.
3 The tools 3D and Minimalist starts this of specification
[7,8,9].

mailto:duarte@ita.br
mailto:durante@ita.br
mailto:strum@lme.usp.br
mailto:jcwang@lme.usp.br
mailto:perez@unisantos.br

from Petrify while keeping the nice properties of a
standard cell design methodology.

This paper is structured as follows: section 2 presents
formally the XMBG specification; section 3 describes
concisely the synthesis procedure; section 4 shows our
experimental results. Finally section 5 brings the
conclusions and future works.

2- XMBG SPECIFICATION
The burst-mode specification (BM) belongs to the class of
specifications that allow multiple-input change. It is
represented by a graph in which nodes represent stable
states while arcs represent state transitions [9].
Yun [7,8] proposed the extended burst-mode specification
(XBM) adding two features: directed don’t care signals
(which allow an input signal to change concurrently with
an output signal) and level sensitive signals (LSS) with
non-monotonic behavior, that may be used with
conditionals signals.
In order to describe a limited concurrent behavior
between input signals and output signals, Oliveira [5],
created a new specification called Multi-Burst Graph
specification, MBG as an expansion of the XBM
specification. Like in the XBM, a MBG represents a state
graph in which each node represents a state and each arc
represents a transition. Each transition in the MBG can be
activated by: 1) an input burst; or 2) a burst expression.
We introduce the input burst OR4, the transition
concurrence (CO) and the transition sequence (SEQ)
operators. The use of burst expressions based on these
operators increase the possibility to describe I/O
concurrence.

2.1- I/O Concurrence behavior using
burst operators
Situation 1: Consider the timing diagram shown in figure
2a.

y
a- d+ /
x- y-

a+ b+ / x+
CO

 b+ c+ / y+

a

b
x

c

d 2

c+ / y+

a+ b+ / x+

a-d+ /x-y-

0

1a

1b

0

1

2

0

1

2

a+ b+c+ /
x+ y+

a- d+ /
x- y-

This behavior can be naturally captured by a STG.
However the same behavior can be captured in the form
of bursts. This behavior may be described in XBM
defining two sequential state transitions activated by the
inputs bursts (a+b+/ x+) and (c+/ y+) (figure 3b). Let’s
suppose that the input burst c+ is activated immediately
after the activation of the output signal x+, but not
obeying the GFM. If the tools 3D and Minimalist
synthesize this behavior in the architecture of Huffman,
elements of delay should be inserted in the line of the
signal c, to satisfy the GFM. This procedure however
degrades the performance and reliability of the controller.
A more efficient solution consists of describing this
behavior through two sequential bursts but activated
immediately (a+ b+/ x+) SEQ (c+/ y+) (exactly as the
timing diagram). This description creates a limited degree
of concurrency between an input c and the output x
(figure 3c), therefore, eliminates the need to satisfy the
GFM. The state transition 0 1 of the figure 3c is of the
type TSEQ.

 (a) (b) (c) (d)
Figure 2 - Specification types: a) timing diagram; b)
XBM_1; c) XBM_2; d) MBG (CO operator).

This behavior can be naturally captured by a STG.
However the same behavior can be captured in the form
of bursts. This behavior can be described in XBM
defining two sequential state transitions activated by the
input bursts (a+b+ / x+) and (c+/y+) (figure 2b). This
solution creates a dependency between this pair of bursts
that does not exist in the application. Another solution
would be to define a unique state transition activated by
the burst (a+b+c+/x+y+) (figure 2c). This solution creates
a dependency between a+ and y+ and between c+ and x+

that also does not exist in the application. These
dependencies preserve the input output sequence, but
increase the latency time of the transition. A more
efficient solution consists in describing this behavior
through two concurrent but independent bursts (a+ b+/
x+) CO (b+ c+/ y+) (exactly as the timing diagram). This
description creates a degree of concurrency between
inputs and outputs (figure 2d). The state transition 0 1 of
the figure 2d is of the type TCO.

4 The OR operator don’t part in this work.

Situation 2: Consider the timing diagram shown in figure
3a.

y

a+ b+ / x+
>

c+ / y+

a

b
x

c

d 2

c+ / y+

a+ b+ / x+

a-d+ /x-y-

0

1a

1b

a- d+ / x- y-

0

1

2

 (a) (b) (c)
Figure 3 - Specification types: a) timing diagram; b)
XBM; c) MBG (SEQ operator symbol >).

2.2- I/O Concurrence behavior using
combination of burst operators
An extended burst expression is characterized by inputs
burst related by the SEQ and CO operators. Let T1, T2 and
T3 be three state transitions. There are two valid options
to combine operators:

1. (T1 CO T2) SEQ T3
2. (T1 SEQ T2) CO T3

The timing diagram shown in figure 4a illustrates option
2.

y

a+/ x+ > b+/y+
CO

c+ / z+

a

x
b

c

d 2

b+ / y+

a+ c+ /
x+ z+

a-d+ /x-y-

0

1a

1b

a- d+ / x- y-

0

1

22

b+ c+ /
z+ y+

a+ b*/ x+

a-d+ /x-y-

0

1a

1b

z

(a) (b) (c) (d)
Figure 4 - Specification types: a) timing diagram; b)
XBM_1; c) XBM_2; d) XMBG (SEQ/CO operators).

This behavior can be naturally captured by a STG. The
same behavior can be captured in the form of bursts.
Figure 4b shows this behavior described in XBM. Two
sequential state transitions are activated by the inputs
bursts (a+c+ / x+ z+) and (b+/y+). This solution may
violate the fundamental operation mode in fast
environments, because b+ can only be activated after the
output burst x+ and z+ is stable. It also creates the
inexistent dependence between the signals c+ and z+.
Another solution for fast environments is shown in figure
4c. The signal b* (directed don't-care) eliminates the
fundamental mode violation problem, but creates two
inexistent dependences: 1) c+ can only be activated after
the x+ activation; 2) y+ will only be activated after the c+
and b+ activations. A more efficient solution shown in
figure 4d consists in describing this behavior exactly as is
in the timing diagram, through two concurrent but
independent bursts (a+/ x+ SEQ b+/ y+) CO (c+/ z+).
The state transition of the figure 4d is of the type TS-C.

The FIFO interface controller benchmark (see figure 5 –
FIFO cell) has 3 inputs (Ao,Ri,D) and 3 outputs (Ai,Ro,L)
[4,10]. Figure 6 shows the STG description of the FIFO
controller. Figure 7 shows how we described the same
behavior in XMBG using the CO/SEQ burst expression.
The state transitions 0 1 and 2 3 are of the type TS-C
depend on the CO/SEQ burst expressions. The state
transitions 1 2 and 3 0 are of the type TS (simple
transition – without operator).

FIFO
CELL

REGISTER
DATA

Ro

A0

Ri

Ai

DATA DL

Figure 5 – Block diagram of the FIFO cell.

D+

Ro+

L- Ai+ Ao-

Ri- Ro-

L- Ai-
Ao+

Ri+

L+L + D-

Figure 6 – FIFO interface controller in STG

Ao+Ri+ /L+
0

1

2

3

Ao-Ri- / L+

D+/
(Ro+
CO

L->Ai+)

D-/ (Ro-
CO L->Ai-)

Figure 7 − FIFO interface controller in XMBG.

2.3 – Restrictions in XMBG
In order to guarantee the implementability of an XMBG
specification, it must be obey five restrictions [5,6]:
1. Signal polarity;
2. State conflict condition;
3. Distinguishability condition;
4. Unique entry condition;
5. Valid burst expression.

Conditions 1 and 2 are inherited from the MBG
description while conditions 3, 4 and 5 are extended from
the MBG [6].

3 – SYNTHESIS METHODOLOGY
The synthesis methodology performs the following tasks:
1. Behavioral capture using the extended multi-burst

graph (XMBG) specification.
2. Transformation of the XMBG into a table of signals

transition cubes, STC [5,6] .
3. State variable insertion: compatible classes

minimization and assignment (adapted algorithms ─
[8,9]).

4. Logic minimization for each non-input signal of the
extended Huffman machine [6].

3.1 SEQ-CO transition cover
All of the types of state transition of XMBG are
functional hazard-free [6]. Each type is cover by a signals
transition cube (STC) and cells are reserved to allow
hazard-free logic minimization in the EHM architecture
using basic gates.
Figure 8 shows the corresponding state flow table of the
TS-C transition of the figure 4d (0 1). The cells of the
table with the content R are reserved for the cover. The
STC cube is formed as: cube A is abcdxyz=2220000;
cube B is abcdxyz=1220222; cube C is
abcdxyz=1220122; cube D is abcdxyz=2210222 (where 2
is don’t-care).

000 010 110 100 101 111 011 001
000

010
110

100
101

111

011
001

a b c

x y z
ooo R 100 R

R R
R

111

111
111

111
R

R

R

0

1

d=0

101 001

001R

R

R

R
R

R

R
R

R

R

R

R

R

101
101

101

100

110

110

R
R

R

R

R

Figure 8 – State Flow Table: covering of the transition
of the type TS-C.

3.2 Logic hazard-free conditions
The following lemmas (without proof) present the
necessary and sufficient conditions to ensure that the
AND-OR implementation (extended Huffman machine) of
f has no logic hazards for the given specified multi-burst
transitions types {TS, TSEQ, TCO, TS-C}5. Cov is a cover of f
implemented in AND-OR logic (EHM architecture).

Lemma 3.1: If f has a 1 1 transition in cube (STC-S-

C[A,B,C,D]), then the implementation is free of logic
hazards if and only if the cubes A, B, C and (D) are
within some cube of the Cov cover.
The conditions for the 0 1 and 1 0 cases are symmetric
(see [6,9])
Lemma 3.2: If f has a 0 1 transition in cube (STC-S-

C[A,B,C,D]), then the implementation is free of logic
hazards if and only if the cubes f(B)=1, f(C)=1 and
(f(D)=1) are within some cube of the Cov cover, and if
there is a cube E of Cov that intersects either cube B or C
or D, then E should cover the final state of the transition.

The exact logic minimization task can be performed using
different algorithms like: Quine-McCluskey [9] or even
Karnaugh maps provided that the selected prime
implicants for the Cov cover satisfy the lemmas.
The figure 9 show the hazard-free logic circuit of the
FIFO interface controller synthesized by our method.

Ao Ri D
R0

L

Ai

Figure 9 – Logic Circuit: FIFO controller

4 – RESULTS and DISCUSSION
Table 1 shows the 5 known benchmarks used in our
experimental study. All of them present at least one
transition based on a CO/SEQ expression. Petrify
produced SoP+latchC solutions while our method
produced only SoP extended Huffman machines. All of
them operate in the GFM and obey the bounded gate and
wire delay model. There are two results columns for each
case: area measured as the # of transistors and latency
time. It can be seen that our method leads to a smaller
area in 3 (out of 5) benchmarks6 and to a smaller latency
time7 in 4 cases. It can be also seen that the overall area
reduction for our method is 14% and 16% for latency
time.

5 Logic hazard for the state transitions types TS TSEQ and
TCO were already discussed in [5,6].
6 The latchC area was estimated as twice the area of a
NOT gate.
7 Based on the IMEC-96 0.7um standard cell library.

SIGNAL

PETRIFY OUR METHOD
Number

of
Transistors

Time of
Latency (ns)

Number
 of

Transistors

Time of
Latency (ns)

CONVERTA

EBERGEN -C

FIFO

TOTAL

PAR

MENG7

2/3

4/1

3/3

2/2

3/3

80

18

68

16

36

218 5,3 180 4,41

0,69

1,00

1,41

1,41

0,48

1,00 18

86 1,06

20

42

14 0,80

0,93

0,93

Table 1: Benchmarks

5 – CONCLUSION
In this paper we presented XMBG, an extension of the
MBG specification that allows to describe asynchronous
finite state machines that present a limited degree of I/O
concurrence. A synthesis method was also proposed that
targets the extended Huffman machines exclusively
composed of basic gates (standard cells). Our results were
compared to those produced by the Petrify synthesis tool
targeting the SoP+latchC architecture. Both solutions
require only standard cell libraries. We showed that in
many cases we obtained better area and latency time
results while keeping the benefits of the standard cell
design methodology. We are now working on a CAD tool
that has been implemented will allow the automation of
the design methodology in order to synthesize large
examples.

References
[1] RENAUDIN, M. Asynchronous circuits and systems: a

promising design alternative. Microelectronic Engineering,
vol.54, pp.133-149, 2000.

[2] YAKOVLEV, A. V. On limitations and extensions of STG
model for designing asynchronous control circuits. Proc.
Int. Conf. Computer design, pp.396-400, October 1992.

[3] VANBEKBERGEN, P. et al. A generalized signal
transition graph model for specification of complex
interfaces. European Design and Test Conference, EDAC,
pp.378-384, March 1994.

[4] CHU, T. -A. Synthesis of self-timed VLSI circuits from
graph-theoretic specifications. PhD thesis, Dept. of EECS,
MIT, June, 1987.

[5] OLIVEIRA, D. L. Miriã: Uma Ferramenta para Síntese de
Controladores Assíncronos Multi-rajada. Tese de
Doutorado, EPUSP, 2004.

[6] OLIVEIRA, D. L. Synthesis Extended Multi-Burst
Controllers using XMBG, Technical Report, Number.
2/2005 - Instituto Tecnológico de Aeronáutica - Brazil.

[7] YUN, K. Y.; DILL, D. L. Automatic synthesis of extended
burst-mode circuits: part I (specification and hazard-free
implementation). IEEE Trans. on CAD of Integrated of
Circuit and Systems, vol. 18:2, pp.101-117, February 1999.

[8] YUN, K. Y.; DILL, D. L. Automatic synthesis of extended
burst-mode circuits: part II (automatic synthesis). IEEE
Trans. on CAD of Integrated of Circuit and Systems, vol.
18:2, pp.118-32, February 1999.

[9] NOWICK, S. M., Automatic Synthesis of Burst-Mode
Asynchronous Controllers. PhD thesis, Stanford
University, 1993.

[10] CORTADELLA, J. et al. Petrify: a tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers. IEICE Trans. on Information and Systems,
E80-D(3), pp.315-325, March 1999.

	Synthesis of Concurrent Asynchronous State Machines
	Using Extended Multi-Burst Graph Specification
	Figure 3 - Specification types: a) timing diagram; b) XBM; c) MBG (SEQ operator (symbol >).
	Figure 7 (FIFO interface controller in XMBG.
	Figure 9 – Logic Circuit: FIFO controller

