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Abstract 
Extended Huffman machines implemented with basic 
gates present an optimum latency time and only use the 
standard-cell technology. Due to the limitations of the 
existent synthesis methods for asynchronous controllers, 
these machines are only used for applications where there 
is limited concurrence between inputs and outputs (I/O 
concurrence). In these cases, the interaction with the 
environment happens in the generalized fundamental 
mode (GFM). This limitation degrades the performance. 
In this paper we propose an extension of the multi-burst 
graph specification (MBG) called of extended multi-burst 
graph (XMBG) that describes asynchronous finite state 
machines that present a limited amount of I/O 
concurrence. We also propose a method that synthesizes 
such controllers as hazard-free extended Huffman 
machines. Our results show that the XMBG specification 
was able to describe a few known benchmarks used in 
interface controller. The experimental results show that 
there is an area and a latency time improvement for our 
solution compared to the solutions coming from the 
Petrify synthesis tool when synthesizing the SoP+latchC 
architecture. Both solutions require only a standard cell 
library for their physical implementation. 
 
1 - INTRODUCTION 
The modern digital systems complexity and the necessity 
of performance improvement has been driven 
considerable interest in asynchronous design [1]. One 
promising application area is in Heterogeneous Systems 
(synchronous and asynchronous mixed modules) [7,8,9]. 
The behavior of such circuits can be represented as a 
Signal Transition Graph (STG) [4]. STG is a Petri-net 
description. Signal transitions describe events. The 
strength of STG is to describe concurrence between inputs 
and outputs (I/O concurrence) that occur in heterogeneous 
systems. However, the larger the number of signals or if 
there are decisions involving level sensitive signals – 
(LSS signals) the description becomes very confusing. 

Furthermore, this type of description may explode in the 
size [2,3,10]. 
Petrify1 [10] is a known synthesis tool that starts from an 
STG and implements timed controllers2 using two types 
of architecture: sum-of-products + latch C (SoP+latchC) 
or complex gates [10]. The resulting circuits obey the 
bounded gate and wire delay model and operate according 
to the generalized fundamental mode (GFM). Complex 
gates present optimal area and latency time at the expense 
of a full custom design. SoP+latchC present lower latency 
time and larger area but require only a standard cell 
solution [5,6,10]. 
 
On the other hand, burst mode specification (BM, XBM) 
solves the problems related to the STG description but is 
very limited to describe I/O concurrency [5,6]. It is the 
natural description of finite state machines3. 
One type of burst mode specification is the multi-burst 
graph (MBG). It accepts all signals types of the XBM 
specification and introduces burst operators that allow 
the description a limited amount of I/O concurrency. 
There are three types of operators: input burst OR, 
transition concurrence (CO) and transition sequence 
(SEQ)  [5,6]. 
We propose an extended version of the MBG (XMBG) 
that further increases the I/O concurrency allowing the 
combination of the CO and the SEQ operators.  
 
In this work we explain the XMBG specification and show 
that it may be used to synthesize hazard-free 
asynchronous controllers as an extended Huffman 
machine composed exclusively on basic gates [1,7,8]. 
Such a solution present nice area and latency time 
properties when compared to the SOP+latchC solution 

                                                           
1 This tool also implements SI controllers. 
2 These controllers operate in the I/O mode and they obey 
the model bounded gate and wire delay. 
3 The tools 3D and Minimalist starts this of specification 
[7,8,9].  
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from Petrify while keeping the nice properties of a 
standard cell design methodology. 
 
This paper is structured as follows: section 2 presents 
formally the XMBG specification; section 3 describes 
concisely the synthesis procedure; section 4 shows our 
experimental results. Finally section 5 brings the 
conclusions and future works. 
 
2- XMBG SPECIFICATION   
The burst-mode specification (BM) belongs to the class of 
specifications that allow multiple-input change. It is 
represented by a graph in which nodes represent stable 
states while arcs represent state transitions [9].  
Yun [7,8] proposed the extended burst-mode specification 
(XBM) adding two features: directed don’t care signals 
(which allow an input signal to change concurrently with 
an output signal) and level sensitive signals (LSS) with 
non-monotonic behavior, that may be used with 
conditionals signals.  
In order to describe a limited concurrent behavior 
between input signals and output signals, Oliveira [5], 
created a new specification called Multi-Burst Graph 
specification, MBG as an expansion of the XBM 
specification. Like in the XBM, a MBG represents a state 
graph in which each node represents a state and each arc 
represents a transition. Each transition in the MBG can be 
activated by: 1) an input burst; or 2) a burst expression. 
We introduce the input burst OR4, the transition 
concurrence (CO) and the transition sequence (SEQ) 
operators. The use of burst expressions based on these 
operators increase the possibility to describe I/O 
concurrence. 
 
2.1- I/O Concurrence behavior using 
burst operators 
Situation 1: Consider the timing diagram shown in figure 
2a. 
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This behavior can be naturally captured by a STG. 
However the same behavior can be captured in the form 
of bursts. This behavior may be described in XBM 
defining two sequential state transitions activated by the 
inputs bursts (a+b+/ x+) and (c+/ y+) (figure 3b). Let’s 
suppose that the input burst c+ is activated immediately 
after the activation of the output signal x+, but not 
obeying the GFM. If the tools 3D and Minimalist 
synthesize this behavior in the architecture of Huffman, 
elements of delay should be inserted in the line of the 
signal c, to satisfy the GFM. This procedure however 
degrades the performance and reliability of the controller. 
A more efficient solution consists of describing this 
behavior through two sequential bursts but activated 
immediately (a+ b+/ x+) SEQ (c+/ y+) (exactly as the 
timing diagram). This description creates a limited degree 
of concurrency between an input c and the output x 
(figure 3c), therefore, eliminates the need to satisfy the 
GFM. The state transition 0 1 of the figure 3c is of the 
type TSEQ. 

               (a)                   (b)          (c)       (d)  
Figure 2 - Specification types: a) timing diagram; b) 
XBM_1; c) XBM_2; d) MBG (CO operator). 
 
This behavior can be naturally captured by a STG. 
However the same behavior can be captured in the form 
of bursts. This behavior can be described in XBM 
defining two sequential state transitions activated by the 
input bursts (a+b+ / x+) and (c+/y+) (figure 2b). This 
solution creates a dependency between this pair of bursts 
that does not exist in the application. Another solution 
would be to define a unique state transition activated by 
the burst (a+b+c+/x+y+) (figure 2c). This solution creates 
a dependency between a+ and y+ and between c+ and x+ 

that also does not exist in the application. These 
dependencies preserve the input output sequence, but 
increase the latency time of the transition. A more 
efficient solution consists in describing this behavior 
through two concurrent but independent bursts (a+ b+/ 
x+) CO (b+ c+/ y+) (exactly as the timing diagram). This 
description creates a degree of concurrency between 
inputs and outputs (figure 2d). The state transition 0 1 of 
the figure 2d is of the type TCO. 

                                                           
4 The OR operator don’t part in this work. 

 
Situation 2: Consider the timing diagram shown in figure 
3a. 

y

a+ b+ / x+
>

c+ / y+

a

b
x

c

d 2

c+ / y+

a+ b+ / x+

a-d+ /x-y-

0

1a

1b

a- d+ / x- y-

0

1

2

                                    
               (a)                       (b)              (c)  
Figure 3 - Specification types: a) timing diagram; b) 
XBM; c) MBG (SEQ operator  symbol >). 
 

 
2.2- I/O Concurrence behavior using 
combination of burst operators 
An  extended burst expression is characterized by inputs 
burst related by the SEQ and CO operators. Let T1, T2 and 
T3 be three state transitions. There are two valid options 
to combine operators: 
 

1. (T1 CO T2) SEQ T3 
2. (T1 SEQ T2) CO T3 

 
The timing diagram shown in figure 4a illustrates option 
2. 
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Figure 4 - Specification types: a) timing diagram; b) 
XBM_1; c) XBM_2; d) XMBG (SEQ/CO operators). 
 
This behavior can be naturally captured by a STG. The 
same behavior can be captured in the form of bursts. 
Figure 4b shows this behavior described in XBM. Two 
sequential state transitions are activated by the inputs 
bursts (a+c+ / x+ z+) and (b+/y+). This solution may 
violate the fundamental operation mode in fast 
environments, because b+ can only be activated after the 
output burst x+ and z+ is stable. It also creates the 
inexistent dependence between the signals c+ and z+. 
Another solution for fast environments is shown in figure 
4c. The signal b* (directed don't-care) eliminates the 
fundamental mode violation problem, but creates two 
inexistent dependences: 1) c+ can only be activated after 
the x+ activation; 2) y+ will only be activated after the c+ 
and b+ activations. A more efficient solution shown in 
figure 4d consists in describing this behavior exactly as is 
in the timing diagram, through two concurrent but 
independent bursts (a+/ x+ SEQ b+/ y+) CO (c+/ z+). 
The state transition of the figure 4d is of the type TS-C. 
 
The FIFO interface controller benchmark (see figure 5 – 
FIFO cell) has 3 inputs (Ao,Ri,D) and 3 outputs (Ai,Ro,L) 
[4,10]. Figure 6 shows the STG description of the FIFO 
controller. Figure 7 shows how we described the same 
behavior in XMBG using the CO/SEQ burst expression. 
The state transitions 0 1 and 2 3 are of the type TS-C 
depend on the CO/SEQ burst expressions. The state 
transitions 1 2 and 3 0 are of the type TS (simple 
transition – without operator). 
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Figure 5 – Block diagram of the FIFO cell. 
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Figure 6 – FIFO interface controller in STG 
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Figure 7 − FIFO interface controller in XMBG. 
 
2.3 – Restrictions in XMBG 
In order to guarantee the implementability of an XMBG 
specification, it must be obey five restrictions [5,6]:  
1. Signal polarity;  
2. State conflict condition; 
3. Distinguishability condition;  
4. Unique entry condition;  
5. Valid burst expression. 
 
Conditions 1 and 2 are inherited from the MBG 
description while conditions 3, 4 and 5 are extended from 
the MBG [6]. 
 
3 – SYNTHESIS METHODOLOGY 
The synthesis methodology performs the following tasks: 
1. Behavioral capture using the extended multi-burst 

graph (XMBG) specification. 
2. Transformation of the XMBG into a table of signals 

transition cubes, STC [5,6] . 
3. State variable insertion: compatible classes 

minimization and assignment (adapted algorithms ─ 
[8,9]). 

4. Logic minimization for each non-input signal of the 
extended Huffman machine [6].  

 
3.1 SEQ-CO transition cover 
All of the types of state transition of XMBG are 
functional hazard-free [6]. Each type is cover by a signals 
transition cube (STC) and cells are reserved to allow 
hazard-free logic minimization in the EHM architecture 
using basic gates.   
Figure 8 shows the corresponding state flow table of the 
TS-C transition of the figure 4d (0 1). The cells of the 
table with the content R are reserved for the cover. The 
STC cube is formed as: cube A is abcdxyz=2220000; 
cube B is abcdxyz=1220222; cube C is 
abcdxyz=1220122; cube D is abcdxyz=2210222 (where 2 
is don’t-care).  
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Figure 8 – State Flow Table: covering of the transition 
of the type TS-C. 



3.2 Logic hazard-free conditions 
The following lemmas (without proof) present the 
necessary and sufficient conditions to ensure that the 
AND-OR implementation (extended Huffman machine) of 
f has no logic hazards for the given specified multi-burst 
transitions types {TS, TSEQ, TCO, TS-C}5. Cov is a cover of f 
implemented in AND-OR logic (EHM architecture). 
 
Lemma 3.1: If f has a 1 1 transition in cube  (STC-S-

C[A,B,C,D]), then the implementation is free of logic 
hazards  if and only if the cubes A, B, C and (D) are 
within some cube of the Cov cover. 
The conditions for the 0 1 and 1 0 cases are symmetric 
(see [6,9]) 
Lemma 3.2: If f has a 0 1 transition in cube  (STC-S-

C[A,B,C,D]), then the implementation is free of logic 
hazards if and only if the cubes f(B)=1, f(C)=1 and 
(f(D)=1) are within some cube of the Cov cover, and if 
there is a cube E of Cov that intersects either cube B or C 
or D, then E should cover the final state of the transition. 
 
The exact logic minimization task can be performed using 
different algorithms like: Quine-McCluskey [9] or even 
Karnaugh maps provided that the selected prime 
implicants for the Cov cover satisfy the lemmas. 
The figure 9 show the hazard-free logic circuit of the 
FIFO interface controller synthesized by our method. 
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Figure 9 – Logic Circuit: FIFO controller 
 
4 – RESULTS and DISCUSSION 
Table 1 shows the 5 known benchmarks used in our 
experimental study. All of them present at least one 
transition based on a CO/SEQ expression. Petrify 
produced SoP+latchC solutions while our method 
produced only SoP extended Huffman machines. All of 
them operate in the GFM and obey the bounded gate and 
wire delay model. There are two results columns for each 
case: area measured as the # of transistors and latency 
time. It can be seen that our method leads to a smaller 
area in 3 (out of 5) benchmarks6 and to a smaller latency 
time7 in 4 cases. It can be also seen that the overall area 
reduction for our method is 14% and 16% for latency 
time.  

                                                           
5 Logic hazard for the state transitions types TS TSEQ and 
TCO were already discussed in [5,6]. 
6 The latchC area was estimated as twice the area of a 
NOT gate. 
7 Based on the IMEC-96 0.7um standard cell library.  
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Table 1: Benchmarks 
 
5 – CONCLUSION 
In this paper we presented XMBG, an extension of the 
MBG specification that allows to describe asynchronous 
finite state machines that present a limited degree of I/O 
concurrence. A synthesis method was also proposed that 
targets the extended Huffman machines exclusively 
composed of basic gates (standard cells). Our results were 
compared to those produced by the Petrify synthesis tool 
targeting the SoP+latchC architecture. Both solutions 
require only standard cell libraries. We showed that in 
many cases we obtained better area and latency time 
results while keeping the benefits of the standard cell 
design methodology. We are now working on a CAD tool 
that has been implemented will allow the automation of 
the design methodology in order to synthesize large 
examples.  
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