
IMPROVEMENT OF TINYOS IMPLEMENTATION FOR SMALL MEMORY FPGA SYSTEM

Ieryung Park, Hosoon Shin, Jihan Park, Eungu Jung and Dongsoo Har

Department of Information and Communications, Gwangju Institute of Science and Technology, Republic of Korea.

{pleastop, hosoon, iceflame, egjung, hardon}@gist.ac.kr

ABSTRACT

We used FPGA for developing prototypes of novel sensor

network system because of its short turn-around-time and
flexibility. For FPGA-based sensor network system, we have to
decrease the size of operating system because of small memory.
Scalability is another important feature because if logic circuit in
the FPGA is changed, the operating system also has to reflect this
modification. In this paper, we discuss a way to implement
TinyOS as an operating system in FPGA based sensor system
with module-integration and discarding unused codes of TinyOS.
This implementation can ensure scalability of TinyOS and drop
down the code-size.

1. INTRODUCTION

Wireless sensor networks are composed of large numbers

of tiny sensor systems which called mote; the sensor
network node consists of a small and low-power micro
controller unit (MCU), a radio frequency (RF) transceiver
for wireless networking and several kinds of sensors.
FPGA based mote used for development of sensor

network system because of FPGA’s short turn-around-time
and flexibility [1]. For FPGA-based motes, we have to
decrease the size of TinyOS because FPGA chip in the
mote doesn’t have enough memory for application
programs. Moreover, scalability is another important
feature because if we change logic circuits in FPGA, the
operating system also has to reflect changes of the system
also.
First, we implemented all modules of TinyOS for our

novel FPGA-based mote. Secondly, we integrated the
modules which are related to RF and serial communication
because they are too large for memory of FPGA and their
hierarchy is very complex to configure TinyOS for
continuous modification of behavior of FPGA-based MCU.
Finally, we discarded unused codes in RF and serial

communication parts. Consequently, we could drop down
the code size of the TinyOS and ensure scalability for
configurable MCU.

2. RELATED WORKS
U.C. Berkeley developed a mote; mica as Smartdust

project. Mica series [2] uses Atmega128L of Atmel, has

128KB ROM and they include CC1000 (Mica1, 2) or
CC2420 (MicaZ) of Chipcon Inc. for RF communication.
U.C. Berkeley also have developed novel motes; Telos
series [3], based on MSP430F1611 of Texas Instruments.
Telos series uses CC2420 of Chipcon Inc. as RF
transceiver.
TinyOS [4]; component-based and event-driven operating

system was developed by U.C. Berkelery in 2000. TinyOS
is written in nesC; extended version of C language. Its
module-typed kernel and libraries are compiled together
with the applications, which are also written in nesC, to
make a single image file for loading on target board.
C. Lynch and F. O’Reilly implemented TinyOS for

PIC16F877-based mote [5]. They also developed a
program which converts a intermediate codes of TinyOS
for compiling TinyOS to their PIC-based mote.

3. SYSTEM ARCHITECTURE

A. Hardware Architecture
Our novel mote is based on Spartan3 XC3S400 of Xilinx
Inc. It consists of 400 K gates, sixteen hardware
multipliers and 36 KB block RAM. We implemented a
core of a MCU which has compatibility with MSP430-
core and several peripherals like 16-bit timer, synchronous
peripheral interface (SPI) for communication with RF
modem, UART for communication with RS232 chip using
Verilog hardware description language on this FPGA.
Other parts of mote consist of CC2420, RF transceiver of
Chipcon Inc., RS232 chip, reset button, two user buttons
and three LEDs. Fig. 1 shows the hardware architecture of
the mote.

Fig. 1: Hardware Architecture.

Table1: Memory usages.

Application Hardware Codes
(byte)

Datas
(byte)

MSP430 2582 40Blink
FPGA 2310 38

MSP430 11628 371CntToRfm
FPGA 6002 44

B. Software Architecture
Most of TinyOS is written by nesC which is an advanced

programming language of C language for component-
based programming. Each module of TinyOS has a
defined interface and other modules only interact with it
using methods of the interface. Moreover, modules can be
bound by wiring, which is an action that connects two
modules through interfaces.

4. IMPLEMENTATION

TinyOS (Mica and Telos version) has modules for UART,

SPI and RF transceiver for RF communication. There are
unnecessary codes for our FPGA-based mote and these
codes increase size of the image file. There is not enough
memory for application because usually there is only 36
KB sized block RAM in FPGA.
Hence, we integrated these modules to one module,

SimpleRF and discarded unnecessary codes of UART, SPI
and RF transceiver for decreasing memory usage. These
changes are shown in Fig. 2.
Memory usages for two simple applications are

represented on Table1. Blink is an application that flashes
a LED by timer interrupt and CntToRfm is an application
that sends a packet through RF transceiver. The two
memory usages for Blink application are almost the same.
In CntToRfm application that uses integrated RF module,
however, Code-usage is dropped down from 11628 bytes
to 6002 bytes although our mote has compatibility with
Telos which is based on MSP430-core.
Moreover, integration of these modules increases the

retagetability for changing architecture of the MCU and
sensor board because we can modify sources easily.

5. CONCLUSIONS

In this paper, we discussed a way to implement TinyOS
for FPGA-based sensor system. We implemented TinyOS
with module-integration and discarding unused codes.
Thus, the improve implementation satisfied FPGA
memory requirement and it can reflect logic circuit
changes in FPGA easily because of scalable
implementation also. Consequently, our implementation
has smaller code-size and more scalability than original

implementation.
GenericCom

AMStandard

UARTFramedPacke RadioCRCPacket

CC2420RadioC

CC2420ControlM

HPLCC2420C

HPLCC2420M

HPLUSART0M

FramerAck

Framer

UART

UARTM

HPLUSART1M

AMStandard

SimpleRfC SimpleUartC

SimpleUartM SimpleRfM

GenericCom

depth = 8 , module = 14

depth = 4 , module = 6

(a) (b)

Fig. 2: Original implementation and our implementation.

REFERENCES

[1] P. S. Zuchowski, C.B. Reynolds, R.J. Grupp, S.G. Davis, B.

Cremen, B. Troxel, “A Hybrid ASIC and FPGA
Architecture”. Computer Aided Design, 2002. ICCAD 2002.
IEEE/ACM International Conference on 10-14 Nov. 2002
Page(s):187-194, 2002.

[2] J. Hill and D. Culler, “Mica: a wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12-24,
November/December 2002.

[3] J. Polastre, R. Szewczyk, and D. Culler, “Telos: emabling
ultra-low power wireless research,” Information Processing
in Sensor Networks (IPSN’05), April 2005.

[4] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.
Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,
and D. Culler, “TinyOS: An operating system for wireless
sensor networks,” in Ambient Intelligence. New York,
NY:Springer-Verlag, To Appear.

[5] C. Lynch and F. O'Reilly, “PIC-based TinyOS
implementation,” Wireless Sensor Networks. Proceedings of
the 2nd European Workshop on Sensor Networks,
January/Febuary 2005.

	ABSTRACT
	A. Hardware Architecture
	B. Software Architecture

