ON THE USE OF GENETIC ALGORITHMS IN GENERATING INPUT
PAIRS THAT CAUSE THE MAXIMUM POWER CONSUMPTION IN
CMOS COMBINATIONAL CIRCUITS

Alberto Palacios Pawlovsky

Toin University of Yokohama, Faculty of Engineering
Department of Electronics and Information Engineering
pawlovsky@cc.toin.ac.jp

ABSTRACT

We have been investigating on the generation of
input pairs for combinational digital circuits that
cause the maximum power consumption on them.
This work shows the results we obtained using ge-
netic algorithms (GA). We show a GA that runs
almost in the same time that speed up simulated
annealing algorithms and give better results than
them for half of the ISCAS85 benchmark circuits.

1. INTRODUCTION

Developments in circuit integration bring us now
chips with billions of transistor and the possibil-
ity of building complete systems on a chip. But,
this increase in integration has also fostered the in-
crease in power consumption and the heat a circuit
has to endure. Usually we build these huge de-
signs from many building blocks and we need to
know their power requirements to determine hot
spots and layout the system to accomplish certain
requirements. Failing to do this could endanger the
reliability of the system or short its life span. A lot
of different approaches have been proposed to mea-
sure the power consumption of digital circuits. We
have methods for combinational circuits [1], sequen-
tial circuits [2], and some that apply to both types
[3]. We can divide these methods into simulation-
based and non-simulation methods. There are meth-
ods to measure the dynamic power, others that fo-
cus on leakage power and methods to measure the
average total power in a circuit [4]. Power consump-
tion in a CMOS circuit consists of two main com-
ponents: dynamic power and leakage power. We
have been studying a non-simulation method that
aims to find the input pair that causes the max-
imum dynamic power consumption in a combina-
tional circuit. Since dynamic power is proportional
to the number of switching gates in a circuit, we

have been looking for methods that maximize this
number. We have already proposed a simulated an-
nealing (SA) based method that proved to be good
but run time consuming for some circuits [5, 6]. We
also relaxed some constraints in it, and published
some results on a fast version of it [7]. We have been
developing a GA-SA hybrid method to research the
benefits and drawbacks of this kind of method when
applied to the problem described above. This work
gives some preliminary results about the GA im-
plementation we have been able to develop and the
results we have obtained with it. In the following
section we briefly explain our method to generate
new input vector pairs using genetic algorithms. In
section 3 we show the results of the experiments we
performed with that scheme. In section 4 we show
some conclusions and topics for future work.

2. GENETIC ALGORITHM

Our GA is basically the one described by Goldberg
[8]. We map a pair of inputs into a chromosome.
In our scheme encoding is not binary. We represent
each pair of binary values in a four-value system. In
other words, a 00, 01, 10, and 11 are represented
by a 0, 2, 3, and 1, respectively (see Fig. 1).

o1 [01| 1
Wq——r—— 00

Tq————— 01

Ty — E 00

N SRR

chromosome

Figure 1: Input pairs and chromosomes.

2.1. Chromosomes and Switching Gates

Each input pair (represented by a chromosome) causes

that certain gates switch in a circuit. As shown in
Fig. 2(a) and Fig. 2(b) there are ineffective and ef-
fective chromosomes. We evaluate them in terms of
their number of switching gates. In our GA 100

[3lz[3sf2]t] [3]sfz]z[1]

(a) (b)

Figure 2: Inputs and switching gates (a) ineffective
chromosome (b) effective chromosome.

chromosomes (or parents) form a generation (see
Fig. 3). We have limited the number of chromo-
somes in a generation to be able to compare the
running time of our GA to previous schemes.

[3]2]3]2]1].

chromosome gene

generation

Figure 3: Chromosomes in a generation.

2.2. Reproduction

In our scheme parents are not selected randomly, we
choose adjacent parents in pairs. We do not shuf-
fle the mating pool and generate a new generation
combining characteristics of two parents to form two
new children. Our GA is a generational one, where
an entire generation is replaced with each iteration.

2.3. Recombination

Children are formed by modifying their parents by
crossover and mutation. For each consecutive pair

Figure 4: Crossover and children generation.

of parents we apply crossover (see Fig. 4) with prob-
ability p.. Otherwise, we copy the parents.

For each offspring (child) we apply mutation with
probability p,, independently for each gene. These
allows us to generate new alleles (other forms of the
same gene) as shown in Fig. 5.

[3 [2]2]11]3 |

|

[3 [t fof21]53|

St
allele allele allele

Figure 5: Mutation and generation of alleles.

The size of the population is recommended to be
set by Eq.(1) , as suggested in [2].

population size = 128 x y/circuit inputs (1)

This way of setting the number of chromosomes
would let us maintain diversity, but on the other
hand will increases the number of trials and the time
needed to run them. As indicated above we limited
the number of chromosomes in a generation to 100
individuals, and test 100 generations to be able to
compare run time and results with previous meth-
ods for the same number of trials. Those results are
shown in the next section.

3. EXPERIMENTAL RESULTS

As detailed above the processes of selecting parents,
crossover, and mutation produces a new generation
from an existing one. The first generation is ran-
domly generated and the evolution process is re-
peated a 100 times. We run these simulations for a
variety of values for p. and p,,. We used values of p,
in the range 0.6 ~ 0.9, and values of p,, in the range
0.4 ~ 0.9. The value of p. determines if two par-
ents crossover to generate new children or not, and
Pm determines if the value of a gene must change.
If a gene must change it will always take another
value, never the one it has. The fitness function
is a simple counting function that determines the
number of switching gates of a chromosome. The

best one in a generation is compared with the best
of all the generations so far evaluated and if it ex-
ceeds becomes the best one. Otherwise it is just
discarded. The best values we obtained for the IS-
CAS85 benchmark circuits [9] are shown in Table
1 (GA are our values). The values used for p. are

Table 1: Switching gates and settings of our work

ISCASS85 Switching gates, settings
circuit | gates | GA | p. Pm
c432 161 103 | 0.6 0.6
c499 202 160 | 0.7 0.6
c880 383 235 | 0.9 0.4
¢1355 546 328 | 0.6 0.6
c1908 | 880 526 | 0.9 0.4
€2670 | 1193 | 927 | 0.7 0.8
c3540 | 1669 | 834 | 0.8 0.8
¢b315 | 2307 | 1321 | 0.9 0.4
c6288 | 2416 | 1324 | 0.8 0.5
c7552 | 3512 | 2235 | 0.9 0.6

those recommended in the literature [10]. Many au-
thors recommend very low values of p,, (0.01 in [2])
or values between 1/population ~ 1/circuit inputs,
but none of these settings improved the numbers
shown in Table 1.

A comparison with other similar works and our
results with simulated annealing are shown in Table
2. If we set the fast simulated annealing method as
a reference, we can see that our GA implementation
match those values and improves in more than a
half of them in 10% or 20%. However, it still gives
lower values than the iterative method of [1] or the
SA-based method of [5].

In Table 3 we show the running times in sec-
onds of three of these methods on the same ma-
chine (2 GHz Intel Core Duo, 2GB 667 MHz DDR2
SDRAM). Clearly the number of switching gates
obtained with the SA of [5] are the best, but as
this table shows its running time is the longest.
The fast SA of [7] and the GA of this work have
similar running times. If we again take as refer-
ence the fast SA of [7] the best figures of merit
(switching gates/running time) are obtained with

the GA described in this work.

4. CONCLUSIONS

We have shown in this work one way of implement-
ing the GA method for generating input pairs for
CMOS combinational circuits. The results are ob-
tained almost in the same time of those of the fast
SA method of [7]. We have been able to improve

those results in 10% or 20% for half of the ISCAS85
benchmark circuits. Further work is needed to de-
termine the best size of the generations and the
number of generations needed to get better results.
One possible choice is the use of Eq.(1). In this case
we would possibly need a fewer number of genera-
tions (see [2]). We have not implemented survivor
selection. This is present only in the case where
crossing criteria is not met, parents are copied and
no alleles appear in the new children. However, in
this case the fitness of the parents is not taken into
account, so there is no guarantee that good chromo-
somes goes into a new generation. This and other
criteria as partially mapped crossover [11] and mul-
tiparent recombination [12] are topics of on going
research. We need to study also the way in which
we are going to use the characteristics of GA when
merging it with SA to form a hybrid approach. We
are considering now two schemes. The first one uses
GA for the generation of new pairs in a pure SA
method. The other one uses SA in the generation
of the children in a pure GA method.

5. ACKNOWLEDGMENTS

We want to thank here to Mr. T. Kikuchi, Mr.
N. Maeda and Mr. A. Nikaidou for helping us in
running many of the simulations and gathering data
from them for this work.

6. REFERENCES

[1] K. Zhang, H. Takase, T. Hayashi, and H. Kita,
” An Enhanced Iterative Improvement Method for
Evaluating the Maximum Number of Simultane-
ous Switching Gates for Combinational Circuits,”
Proceedings of the 1997 Asia and South Pacific
Design Automation Conference (ASP-DAC’97),
Chiba, Japan, pp. 107-112, January, 1997.

[2] Michael S. Hsiao, ”Genetic Spot Optimization
for Peak Power Estimation in Large VLSI Cir-
cuits,” VLSI Design, Vol. 15(1), pp.407-416, 2002.

[3] Yi-Ming Jiang, Kwang-Ting Cheng, and Angela
Krstic, ”Estimation of Maximum Power and In-
stantaneous Current Using a Genetic Algorithm,”
Proc. of the IEEE 1997 Custom Integrated Cir-
cuits Conference, pp.135-138, 1997.

[4] Yongjun Xu, Jinghua Chen, Zuying Luo, and
Xiaowei Li, ” Vector Extraction for Average Total
Power Estimation,” Proceedings of the 2005 Asia
and South Pacific Design Automation Conference

Table 2: Comparison with other methods.

ISCASS85 switching gates [7]=1
circuit | gates | [1] [5] GA | 1] | [5) | [7] | GA
c432 161 145 102 90 103 | 1.6 | 1.1 1 1.1
c499 202 118 157 140 160 | 0.8 | 1.1 1 1.1
c880 383 318 280 195 235 | 16|14 | 1 1.2
c1355 546 299 327 305 328 |10 11| 1 1.1
c1908 880 601 710 505 526 | 1.2 |14 | 1 1.0
c2670 | 1193 | 809 | 1130 | 772 927 | 10|15 | 1 1.2
¢3540 1669 921 953 812 834 | 1.1 | 1.2 1 1.0
cH315 | 2307 | 1484 | 1912 | 1290 | 1321 | 1.2 | 1.5 1 1.0
c6288 | 2416 | 1564 | 1630 | 1242 | 1324 | 1.3 | 1.3 1 1.1
c7552 | 3512 | 2178 | 2933 | 2258 | 2235 | 1.0 | 1.3 | 1 1.0
Table 3: Time comparison and figure of merit.
ISCASS85 run time (secs) [7]=1 figure of merit
circuit | gates [5] [7] GA [5] 7] | GA [5] 71 | GA
c432 161 45.7 1.3 1.3 35.7 1 1.0 | 0.032 1 1.1
c499 202 44.7 1.1 1.1 41.0 1 1.0 | 0.027 | 1 1.2
c880 383 241.0 | 4.0 4.0 59.8 1 1.0 | 0.024 1 1.2
cl355 546 241.1 | 5.9 6.0 40.6 1 1.0 | 0.026 1 1.1
c1908 880 366.6 | 11.2 | 11.2 | 32.9 1 1.0 | 0.043 1 1.0
c2670 | 1193 | 3178 | 13.7 | 13.7 | 2318 | 1 1.0 | 0.006 | 1 1.2
c3540 1669 | 1217 | 24.5 | 24.5 | 49.6 1 1.0 | 0.024 1 1.0
cb315 | 2307 | 6735 | 389 | 39.1 | 1734 | 1 1.0 | 0.009 | 1 1.0
c6288 | 2416 | 3082 | 98.0 | 99.9 | 31.5 1 1.0 | 0.042 | 1 1.0
c7552 | 3512 | 9908 | 50.8 | 51.3 | 195.0 | 1 1.0 | 0.007 | 1 1.0

(ASP-DAC 2005), Shanghai, China, pp.1086-
1089, January 2005.

[5] Alberto Palacios Pawlovsky, ”Using simulated
annealing to generate input pairs to measure
the maximum power dissipation in combinational
CMOS circuits,” IEICE ELEX, Vol.2, No.4, pp.
115-120, February 25, 2005.

[6] A. Palacios Pawlovsky and H. Ishikawa, ”A
Study of Cooling Schemes for the Generation
of Input Pairs of CMOS Combinational Cir-
cuits Using the Simulated Annealing Algorithm,”
Proceedings of the 2005 International Technical
Conference on Circuits/Systems, Computers and
Communications (ITC-CSCC 2005), Jeju, Korea,
pp-179-180, July, 2005.

[7] A. Palacios Pawlovsky and M. Haraguchi, ”On
the Speeding Up of the Simulated Anneal-
ing Algorithm in Generating Input Pairs for
CMOS Combinational Circuits,” Proceedings of
the 2006 International Technical Conference on
Circuits/Systems, Computers and Communica-

tions (ITC-CSCC 2006), Chiang Mai, Thailand,
Vol. I, pp.121-124, July, 2006.

[8] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading MA, 1989.

[9] F. Brglez and H. Fujiwara, ”"A Neutral Netlist
of 10 Combinational Benchmark Circuits,” Proc.
IEEE International Symposium on Circuits and
Systems, pp. 695-698, 1985.

[10] A. E. Eiben and J. E. Smith, Introduction to
Evolutionary Computing, Springer-Verlag, Berlin
Heidelberg, 2003.

[11] D.E. Goldberg and J. R. Lingl, ”Alleles, Loci
and the Traveling Salesman Problem,” Proceed-
ings of the International Conference on Genetic
Algorithms and their Applications, pp. 154-159,
Hillsdale NJ, 1985.

[12] A. E. Eiben, ”Multiparent Recombination in
Evolutionary Computing,” Advances in Evolu-
tionary Computing: Theory and Applications,
Springer-Verlag, New York, NY, 2003.

