
A HIGH-LEVEL BASED FRAMEWORK APPROACH FOR DESIGNING

RECONFIGURABLE SYSTEMS

Remy Eskinazi

UPE - Escola Politécnica, CEFET-PE

remy.eskinazi@gmail.com

Manoel Eusebio, Halmos Fernando, Abel Guilhermino, Paulo Maciel, Stelita Silva, Jordana Seixas, Pablo de

Santana, Paulo Sergio B. Nascimento

UFPE – Cin

{mel, hfn, agsf, prmm, sms, jls, psb, psbn}@cin.ufpe.br

ABSTRACT

This paper presents a high-level framework for
designing real-time reconfigurable systems. The
framework has two major stages. The first stage is real
time task scheduling generation in order to deal with the
task timing constraints. The second stage is a SystemC
description that is used to model the scheduling and a
FPGA reconfigurable system. Experimental results are
presented in order to validate the methodology.

1. INTRODUCTION

During the last years, the development of embedded

systems has more and more considered run-time

reconfiguration. This fact occurs mainly because of the

enormous advances in the implementation of digital

electronic systems, especially the ones presenting some

kind of embedded computation [1], [2], [3]. Considering

partial and dynamic reconfiguration, this work presents

a framework that enables the design of FPGA based

reconfigurable systems. This paper is organized as

follows: Section 2 presents an overview about recent

works on run-time reconfiguration. Section 3 brings the

framework description, with detailed explanation on its

internal representation, scheduling generation, tasks

mapping and execution of the configuration. Section 4

describes the high-level reconfigurable modeling in

SystemC. Section 5 describes in details an example and

results. Section 6 concludes this paper and presents

some direction for future works.

2. RELATED WORK

Dynamically Reconfigurable FPGAs have occupied a

large space in designing modern embedded systems.

This fact comes from the increment of reconfigurable

blocks available and powerful soft-core embedded

processors. However, methods for efficient

implementation of run-time systems based on these

components are still a large field of research. Problems

such as partitioning, task allocation and scheduling have

been arduously studied due to the difficulty in run-time

system implementation and the necessity for increasing

system performance, [4]. Thus, frameworks that support

run-time system designing need to take into account

such parameters. Some academic approaches exploit

these characteristics such as [1].

3. FRAMEWORK DESCRIPTION

Figure 1 depicts the structure of the framework for

designing reconfigurable systems. The framework is

basically composed of two stages: the Scheduler and the

SystemC Reconfiguration Model. Initially, the analysis

tools determine the tasks scheduling. After that, an

internal reconfigurable representation is created in order

to emulate a real reconfigurable environment. So, this

stage represents the real platform for the

implementation of the design. Between these two

stages a parser tool provides a link in order to translate

the representation of the scheduling stage for the

platform representation in second stage.

The first step in the framework is represented by a

particular application. This application is composed of

several real-time hardware tasks. Each task of the

application is translated in a Timed Petri Net (TPN)

internal model. Additionally, a TPN precedence model

that represents the data dependence between tasks is

applied. Considering the task model and precedence

model, a final TPN model is built in order to represent

the application.

Figure 1. Framework for Run-time reconfigurable designing

Petri Nets is used as internal language due to the

easiness in representation of parallel and timing events

that are strong characteristics of real-time embedded

systems. A tool called PNBuilder builds this application

model in an internal format. A brief definition of the

task model can be placed in the following form:

3.1 Tasks Model Definitions

Let Tmp = (P, T, F, W, m0, Γ) be a Timed Petri Net

model which represents a particular real-time task Ti,

where P represents an ordered set of places, T,

represents an ordered set of transitions, P and T are non-

empty disjoint sets and represents the two types of

nodes of the graph. F ⊆ (P X T) ∪ (T X P) represents

the edges of the net and the flow relation, W: F� ℵ

represents the weight of the flow relation, m0: P�ℵ,

represents the initial marking of the net and Γ : T � ℵ,

is a function that maps each transition to a bounded time

delay. In this definition, the set of places represents the

availability of an operation or processing and the set of

transitions represents all the task activities. Each

transition ti presents a time associated delay Γ(ti), which

represents the time expended by the task activity i. The

marking corresponds to the number of tokens in places

where mi : P�ℵ. Therefore, mi (pj), ∀ pj ∈ P, is the

number of tokens on pj at marking mi.

3.2 Scheduler analysis

The scheduler analysis must be performed through a

Petri Net analyzer over the application model. This tool

allows to check several system properties, such as,

feasible firing schedules, reachability, deadlock

freedom, starvation-freedom, boundedness, fairness and

others characteristics. Particularly, the characteristic of

reachability is very important because it denotes that a

scheduling process is possible to attend all the real-time

task timing constraints.

After mapping of all tasks in the Petri Net Model,

the scheduling is obtained and presents the best

performance through the shorter time of execution of

the entire application (e.g. execution of all tasks). The

execution of all the tasks allows the net to achieve a

determined state (marking). The algorithm explores all

the tracks to find this marking and choose the track that

expends less cycle clocks to achieve it.

 Initially, the algorithm detects if the net is feasible

for a final marking. If yes, the algorithm constructs the

state graph of the net. After this processing, the tool

chooses the shortest way regarding the firing of all

transitions, spending the least possible time. This

algorithm presents a complexity level 2
n
, where n means

the number of tasks that should be scheduled in the

architecture.

4. RECONFIGURABLE SYSTEM MODEL

In this session the second stage of the framework is

presented: the implementation of the reconfigurable

system executable model. Now, two extensible and

configurable templates are implemented in SystemC to

model the functionalities of the high-level

reconfigurable system designs. The templates are

defined as RAC (Reconfigurable Area Container), and

RCT (Reconfigurable Controller) respectively

Figure 2 depicts the RAC model. This model

represents an abstraction of a reconfigurable area in a

programmable hardware device. It can be understood as

a container that stores IP candidates for reconfiguration.

RAC operates, in each moment, with the functionality

of one of their candidate modules, emulating in this

way, a reconfigurable area. In its construction, a project

constraint that restricts the candidate modules to a same

external communication interface was considered. In

order to represent this abstraction, the RAC was defined

through the inheritance concept. The common I/O

interface should be defined in an abstract class, which in

the defined model, is represented by the IPInterface

class. The other classes of the model should extend this

abstract class, guaranteeing, thus, a common interface

among the modules. In this abstract class, a virtual

method was also declared called process(), that should

be implemented in each of the daughter classes,

represented by the RAC and IP classes.

Internal TPN

Tasks Model

Left-Edge

tasks

Mapping

IP

Database

TPN App
Model

Builder

TPN App
Model

Builder

TPN

Analyzer

Tasks Load

sequence

Scheduling

Generation

System C

Reconfiguration Model

Reconfigurable

Module
Reconfiguration

Controller

Reconfiguration

Controller

IP Mapping

ToolsTools Process/Methods Database

Parser

Thus, following the proposed model, the

implementation should go through the following steps:

1. Design of the Abstract class IPInterface

a. Define the module’s common attributes

b. Declare the virtual method, process()

2. Design of the Candidates Modules

a. Extend the IPInterface class through

inheritance

b. Implement the method process(), for

each defined IP

3. RAC implementation

a. Extend the IPInterface class through

inheritance

b. Instantiate each one of the Candidate

Modules

c. Implement the method process(), that

should control the modules to be

executed through the ipID attribute

The next step is the implementation of a module that

can control the reconfigurable areas defined. This

function is accomplished by the RCT, presented in

figure 3.

In this figure, several RACs are controlled by a single

RCT, that is responsible for centralizing all execution

and reconfiguration processes of the candidate modules,

allocated in the RACs. The idea is to accomplish that

control through status information that can store data

about the internal state of each managed RAC. As

examples of information managed by the controller, we

can quote: data from actives modules in each RAC, and

which IPs is available for reconfiguration in each area.

However, the execution order and the reconfiguration

process of the tasks are not defined in this controller.

The controller only receives messages through its

external interface, and executes the requested

operations.

5. EXAMPLE APPLICATION

An example that involves the stages described in the

framework is detailed. In this example, a test application

is composed of 6 well-defined tasks, as shown in table 1

and must be performed in a static scheduling. The tasks

present individual deadline timing for execution and the

overall application as well. This means that all tasks

must be performed before the final timing of the

application. The example also presents data

dependencies between some tasks.

Table 1. Test application Tasks

Task Deadline
timing (ut)

Data Dependence

Encrypt Machine 5 -

State Machine 10 -

Factorial Generator 2 -

Gray sequence 2 Encrypt Machine

Ring sequence 16 -

ULA 4 Factorial Generator, State
Machine

Application Deadline 30 -

Each task must be mapped in TPN task model. After, all

tasks models are joined in a final application model.

This final model carries all the timing that is involved in

the execution of the application and the data dependence

between tasks. Each reconfigurable area must present

the same interface as a “virtual slot”, in order to enable

the reconfiguration of the tasks. After the scheduling

generation these slots will be translated in

Reconfigurable Area Container (RAC).

Figure 4 depicts the TPN model implemented for this

application.

Fig.ure 2. Reconfigurable Area Container (RAC) model

Fig. 3. Reconfigurable Controller (RCT) model

When the TPN application model is finished, a PN

analyzer tool is used for executing the following steps:

• Search for space state on the net;

• If it’s possible a final marking (end Process)

• The way that spends less time in order execute

all tasks

 Figure 5 depicts the result of this analysis. The diagram

shows the best sequence considering two reconfigurable

regions (slot1, slot2).

The results of scheduling generation are translated for

the high-level reconfigurable system representation in

systemC. In this environment, the dynamics of the

reconfigurable system can be proved in functionality

and efficiency. Figure 6 shows the class diagram that

was generated in order to form the reconfigurable

controller (RCT) and the Reconfigurable Area

Container (RAC) for the application example.

6. CONCLUSIONS AND FUTURE WORK
In this paper, there was been presented a framework for

run-time reconfiguration designing. The framework is

split into two major parts: The real-time task scheduling

and a high-level representation of reconfigurable

environment. Future works consider a refined process of

the model presented, in order to enable a synthesizable

implementation of reconfigurable system design, and

then its implementation in a real reconfigurable

platform.
7. REFERENCES

[1] H. Walder and M. Platzner, “Reconfigurable Hardware

Operating Systems: From Design Concepts to
Realizations” in Proceedings of the 3rd International

Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), Las Vegas, Nevada, USA, pp
284-287, 2003.

[2] J. Becker, W. Jin and M. Ulmann, “Hardware enhanced

Function allocation management in reconfigurable
systems,” 2005 IEEE IPDPS Int. Parallel & Distributed
Processing Symphosium – RAW Reconfigurable
Architectures Workshop, April 2005.

[3] J. Becker, M. Hubner and K. Paulsson, “parallel and

flexible multiprocessor system-on-chip for adaptive
automotive applications based on Xilinx Microblaze soft-
cores,” 2005 IEEE IPDPS Int. Parallel & Distributed
Processing Symphosium – RAW Reconfigurable

Architectures Workshop, April 2005.

[4] H. Walder and M. Platzner, Online Scheduling for

Block-Partitioned Reconfigurable Devices, in 6th

Design, Test and Automation in Europe Conference and

Exhibition – (Date’03), Messe Munich, Germany,

pp.290-295, 2003

Figure 4. TPN application model

Figure 5. Scheduling results

Figure 6. Class diagram of the application

End_Process
App_Deadline

Start

Encryp Sta_Mac Factorial

Slots

ULAGray

Ring

End_Process
App_Deadline

Start

Encryp Sta_Mac Factorial

Slots

ULAGray

Ring

5 10 15 20 25

Seq ULA

Encod

Fat

Gray Ring

Slot 1

Slot 2

