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ABSTRACT 
 
This article addresses an efficient hardware 
implementations for multiplication over finite field 
GF(2233). Multiplication in GF(2n) is very commonly 
used in cryptography and error correcting codes. An 
efficient hardware could reduce the cost and 
development   for these applications. This work 
presents the hardware implementation of polynomial 
basis. In this case, the multipliers were designed using 
bit-serial multiplication , bit-parallel multiplication, 
PCA based serial multiplication and PCA parallel 
based  multiplication algorithms, the synthesis and 
simulation were carried out using Quartus II v.5.0 of 
Altera, and the designs were synthesized on the Stratix 
II EP2S60F1020C3. The simulation results show that 
the multipliers designed present a very good 
performance using small area. 
 

1.  INTRODUCTION 
 
In order to protect or exchange confidential data, the 
cryptography and error correcting codes play an 
important role in the security of the information. 
Therefore, it is necessary to implement efficient 
cryptosystems, which can reduce the cost and 
development for these applications. In this context, 
public key cryptography based on elliptic curves is 
widely used because it presents higher security per key 
bit, and their two main applications are the private key 
exchange and the digital signature. Additionally, the 
Elliptic Curve Cryptosystems (ECC) can be used in 
applications where the computation resources are 
limited such as smart cards and cellular telephones. 
The ECC systems are included in the NIST and ANSI 
standards, and the principal advantage over other 
systems of public key like RSA is the size of the 
parameters, which are very small, however the ECC 
systems provide the same level of computational 
security.  

The efficiency of an algorithm is often measured 
by the number of gates and the total gate delay, this 
work presents different algorithms for polynomial 
basis multiplication. 

On the other hand, it is import to mention that the 
most expensive operation applied in elliptic curve 
based cryptosystems is the “scalar multiplication” of a 

large natural number with a point on an elliptic curve 
[1]. In this case, the performance of an elliptic curve 
cryptoprocessor depends on the multiplication over 
GF(2m). Therefore, the multiplier is the most important 
functional block for elliptic curve cryptoprocessor 
design.  

In the literature are presented a variety of 
algorithms and architectures for the polynomial basis 
multiplication over GF(2m). In [2] G. Orlando and C. 
Paar present a super serial galois field multiplier over 
GF(2167). In [3] M. Hütter, J Groβschädl and G. 
Kamendje present a versatile and scalable digit 
serial/parallel multiplier over GF(2256). In [4] P. 
Kitsos, G Theorodiris and O. Koufopavlou present an 
efficient reconfigurable multiplier architecture over 
GF(2210). In [5] C. Grabbe, M. Bednara, J. Teich, J. 
von zur Gathen and J. Shokrollahi present FPGA 
designs of parallel high performance GF(2233). 

This work addresses efficient hardware 
implementations for polynomial basis multiplication 
over GF(2233). In this case, the multipliers designed 
present a good speed/area ratio, which is very suitable 
for elliptic curve cryptoprocessor design. Therefore, 
elliptic curve based cryptosystems can be used in 
applications that require small area, good speed and 
low consumption power, such as smart cards and 
cellular telephones. 
 This article is organized as follows. Initially, 
section 2 presents the arithmetic in finite field GF(2m). 
Section 3 presents algorithms for polynomial basis 
multiplication over GF(2m). Section 4 presents 
hardware architectures for polynomial basis 
multipliers. In section 5 the simulation results are 
presented. Finally, section 6 presents the conclusions 
and the future work. 
 
 
2. ARITHMETIC IN THE FINITE FIELD GF(2m) 

 
A set of m linearly independent elements β ={β0 ,β1,..., 
βm-1} of GF(2m)  is called a basis for GF(2m). 

A basis for GF(2m) is important because any 
element a ∈ GF(2m) can be represented as a linear 
combination of the elements of β over GF(2). The two 
most common types of bases used in conventional 
hardware and software implementations are the 
polynomial basis and normal basis. 



A polynomial basis for GF(2m) is as follows: 
{1, α, α2 , … , αm-1} where α is a root of an irreducible 
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coefficients pi ∈GF(2).  When using polynomial basis, 
each element of the field is represented by a 
polynomial of the form 
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operations within the field are then performed modulo 
the polynomial p(x). 
Addition in GF(2m) is implemented as component-
wise XOR while a multiplication can be performed 
modulo an irreducible polynomial p(x). 
 
2.1. Addition  
The addition of two field elements of GF(2m) is 
performed by adding the coefficients modulo 2, which 
is nothing else than bit-wise XOR-ing the coefficients 
of equals powers of x, that is if )....( 01221 aaaaaa mm −−=  
and )....( 01221 bbbbbb mm −−=  are elements of GF(2m), 
then )...( 1210 −==+ mcccccba  where  ci = (ai + bi ) 
mod 2. 
 
2.2. Multiplication 
The multiplication of two field element C=AB, where 
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field multiplication can be carried out by multiplying 
A(x) and B(x) and then performing reduction modulo 
p(x) or alternatively by interleaving multiplication and 
reduction, the multiplication is shown as follows: 
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3.  ALGORITHMS FOR POLYNOMIAL BASIS 

MULTIPLICATION OVER GF(2m)  
  
The serial multiplier, sometimes referred to as “MSB 
first multiplier” is a polynomial basis multiplier and 
computes the GF(2m) multiplication in m cycles. 
 The product is obtained by the addition of partial-
products, and the reduction is interleaved with the 
addition steps and performed by additions of the 
irreducible polynomial. The algorithm is shown in 
Figure 1. 
 
 
 
 
 
 
 
 

Figure 1: MSB first polynomial basis multiplication 
algorithm 

In [6], H. Li and C. N Zhang present a low complexity 
Programmable Cellular Automata (PCA) based 
versatile modular multiplier in GF(2m). in this case, the 
PCA rules is shown in Table 1. Where Cm is 
configured as the coefficients of B(x) and Cr is 
configured as the coefficients of P(x), Xs is configured 
as coefficients of A(x), Xl and Xs are partial results of 
neighborhood PCA. The architecture of PCA cell is 
shown in Figure 2 

 
Cm Cr S 
0 0 Xl 
0 1 Xl+Xr 
1 0 Xl+Xm 
1 1 Xl+Xr+Xm 

Table 1: PCA rules 
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Figure 2: PCA cell  

 
This work presents an architecture modular multiplier 
based on PCA (Programmable Cellular Automata) and 
the polynomial basis representation, the basic 
architecture of the multiplier is suitable for both 
parallel and serial multiplier. The algorithm is shown 
in Figure 3. 

 

 
Figure 3: PCA based modular multiplication 

algorithm 
 

In [7] H. Wu presents a bit-parallel finite field 
multiplier which is implemented in two steps: 
polynomial multiplication and reduction modulo the 
irreducible polynomial. 
1. Polynomial multiplication: S=AB 
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2. Reduction modulo the irreducible polynomial: 
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2. PCA based modular multiplication algorithm 
 

 Input: A(x),B(x), p(x) Output: C=AB mod p(x) 
 

5. Reset PCA 
6. Configure coefficients of B(x) as Cm, and 

coefficients of P(x) as Cr 
7. Run PCA m clock cycles 

1. MSB first polynomial basis multiplication 
algorithm  
 

 Input: A,B ∈ GF(2m)      Output: C=AB mod p(x)  
 

1. C-1(x)=0 
2. For k = 0 to m-1 do 
3. Ci(x)=[Ci-1(x)x+bm-1-iA(x)]mod p(x) 



4. HARDWARE ARCHITECTURES FOR 
POLYNOMIAL BASIS MULTIPLIERS 

 
In this section are presented the hardware architectures 
for polynomial basis multiplication over GF(2233). In 
this case, MSB first multiplication, bit-parallel 
multiplication and modular multiplier based on PCA 
algorithms are implemented. 
 
4.1. MSB first based multipliers 
The hardware multiplier based on the MSB first 
multiplication, uses m cells and computes the 
multiplication in m cycles. The hardware architecture 
for the polynomial basis multiplier is shown in Figure 4.  
 
 
 
 
 
 
 
 
 
 

Figure 4: MSB first based multiplier in GF(24) 
 
4.2. Serial and parallel PCA multiplier  
An array of PCA cells determine the architecture of 
the polynomial multiplier GF(2n), in this case in 
Figure 5 and Figure 6 is shown an serial and parallel 
multiplier over GF(24) respectively. 
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Figure 5: Serial multiplier in GF(24)  

 
4.3. Parallel multiplier  
The hardware architecture for the parallel multiplier 
algorithm for GF(2233) is presented in Figure 7. In this 
case, the two modules correspond to the polynomial 
multiplication and modulo reduction respectively, 
polynomial multiplication module uses an array which 
uses XOR and AND functions, where m2 AND gates 
and (m-1)2 XOR gates are used. The equation presents 
the modular reduction as follows: 
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Figure 6: Parallel multiplier in GF(24) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Hardware architecture for GF(24) 
multiplier based on parallel multiplier algorithm 

 
 

5.  SIMULATION RESULTS 
 

In order to verify the performance of the 
multipliers, several simulations were carried out. The 
simulation results for hardware implementations are 
shown in Tables 1 and 2. The multipliers are 
implemented on the FPGA EP2S60F1020C3, and the 
simulation and synthesis were carried out using 
Quartus II version 5.0. 
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Serial LC 
combinationals 

LC  
registers 

FMAX(MHz) 

MSB 163 163 215.8 
PCA 163 163 215.8 

 
Table 1: Simulation results for serial multiplier  

 
parallel Logic  

elements 
LC 

registers 
FMAX(MHz) 

Parallel 30909 0 34.44 
PCA 26569 163 4.64 

 
Table 2: Simulation results parallel multiplier 

 
As could be observed from Tables 1, the MSB 

first and PCA algorithm based multipliers present a 
good performance using small area, which is very 
suitable for elliptic curve cryptoprocessor design. In 
Table 2, the Parallel multiplier present a good 
performance using smaller area than the PCA 
algorithm based multiplier. 
 

6.  CONCLUSIONS AND FUTURE WORK 
 

This article presents the design of efficient 
hardware implementations for the polynomial basis 
multiplication over GF(2233). In this case, the 
multipliers were designed using bit-serial 
multiplication, bit-parallel multiplication, PCA based 
serial multiplication and PCA parallel based 
multiplication algorithms for the multiplication over 
GF(2m). 

The MSB first and PCA algorithm based 
multipliers present a good performance this allows that 
elliptic curve based cryptosystems can support 
applications economically feasible such as smart cards 
and cellular telephones. The multipliers were 
simulated using Quartus II of Altera and synthesized 
on the FPGA EP2S60F1020C3. 

The future work, will be oriented to design 
hardware for squarin and inversion using polynomial 
basis over GF(2233), design a fast parallel multiplier 
over GF(2233) and to implement new multiplication 
algorithms. 
 

7.  ACKNOWLEDGMENT 
 

This work was sponsored by Altera Corporation 
through the University Program. The authors give a 
special thanks to Mrs Ralene Marcoccia of Altera 
Corporation. 
 

8.  BIBLIOGRAPHY 
 
 [1] M. Jung, “FPGA Based Implementation Of An 

Elliptic Curve Coprocessor Utilizing 
Synthesizable VHDL code”, Darmstadt 
University of Technology. Available at http:// 
www.vlsi.informatik.tu-darmstadt.de/staff/ mjung/ 
publications/comprehensive.pdf 

[2] G. Orlando, C. Paar, “a super serial galois fields 
multiplier for FPGAs and its application to public 
key algorithms”, 
ieeexplore.ieee.org/iel5/6529/17422/00803685.pd
f?arnumber=803685  

[3]  M. Hütter, J Groβschädl and G. Kamendje “A 
versatile and scalable digit serial/parallel 
multiplier architecture for finite field GF(2m)”, 
www.iaik.tu-graz.ac.at/research/ publications / 
2003 /  ITCC2003_VSD.pdf 

[4] P. Kitsos, G Theorodiris and O. Koufopavlou, “an 
efficient reconfigurable multiplier architecture for 
galois field GF(2m) ”, microelectronic journal 34 
(2003) 975-980.  

 [5]  C. Grabbe, M. Bednara, J. Teich, J. von zur 
Gathen and J. Shokrollahi, “FPGA design of 
parallel high performance GF(2233) multipliers”, 
ieeexplore.ieee.org/iel5/8570/27136/01205958.pd
f? isnumber=&arnumber=1205958  

[6] H. Li and C. N Zhang, “Efficient cellular 
automata versatile multiplier for GF(2m)”, 
http://www.iis.sinica.edu.tw /JISE/2002/ 2002 
07_01.pdf.  

[7] H. Wu, “bit-parallel finite field multiplier and 
squarer using polynomial basis”, http//: www.  
ieeexplore.ieee.org/iel5/12/21897/01017695.pdf?a
rnumber=1017695. 


