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ABSTRACT 

 

This work describes an FPGA implementation of a 

Microprogrammable Controller to perform lossless data 

compression based on the Huffman Algorithm. The 

Huffman Algorithm is a lossless statistical coding 

algorithm used  in many modern compression systems, 

such as the JPEG and MPEG-2 standards. The 

Microprogrammable Controller architecture was 

implemented in blocks, using the hardware description 

language VHDL and the Huffman microprogram was 

implemented using the microinstrutions of this 

architecture. The description and functionalities of the 

main blocks that compose its architecture are presented 

as well as the simulation and synthesis methodology. By 

changing the microcode, the controller can also 

implement other compression algorithms.  

 

1. INTRODUCTION 

 

Data compression is a key component in many 

applications dealing with large amounts of data that must 

be efficiently stored or transmitted. With the advances in 

microelectronics, new integrated circuit technologies 

(such as FPGA - Field Programmable Gate Array), and 

new CAD (Computer Aided Design) tools, complex data 

compression algorithms can be implemented in high-

level languages and mapped to circuits in an efficient 

way.  

Most hardware implementations of data compression 

methods are not flexible enough to allow quick 

adjustments in the basic algorithm. On the other hand, 

the use of microprogrammable controllers provides a 

very flexible way to implement several data compression 

algorithms, such as Golomb, Golomb-Rice, Huffman and 

Arithmetic Coding [1]. 

Huffman algorithm [2] is the optimum integer-length 

coding algorithm, generally achieving data rates close to 

the message entropy [3]. Huffman coding is present in 

many modern compression methods, such as the JPEG 

and MPEG-2 standards.  

The Huffman algorithm creates a different binary tree 

for each information source to be coded. This binary tree 

associates a code for each symbol of the source alphabet.  

This binary tree is not easy to implement in hardware, so 

most hardware implementations of the Huffman 

algorithm [4],[5] use static codes stored in a table. This 

solution codes any message in the same manner, 

independently of the characteristics of each specific 

information source, which is reflected in loss of 

compression. 

This paper presents an FPGA implementation of a 

microprogrammable controller to perform lossless 

compression based in the Huffman algorithm. The 

Huffman binary trees are generated dynamically, i.e., a 

different binary tree for each information source. 

The rest of this paper is organized as follows. In 

Section 2 the Huffman Algorithm is described. Section 3 

presents the architecture of the MCC 

(Microprogrammable Controller for Data Compression), 

details of its implementation. Section 4 presents the 

simulation and synthesis methodology. Section 5 

presents synthesis results in terms of the FPGA devices 

used. Finally, conclusions are presented in Section 6.  

 

2. THE HUFFMAN ALGORITHM 

 

The Huffman algorithm is a lossless statistical coding 

algorithm that depends on the source symbols 

probabilities. With lossless compression, the original 

information can be perfectly reconstructed from the 

coded message.  

Huffman algorithm associates a weighted tree for 

each symbol of the information source. Initially, each 

weighted tree has only one node with weight equal to the 

associated symbol probability. In each iteration of the 

algorithm, the two trees with the smallest weights 

become the right and left subtrees of a new tree whose 

weight is the sum of the weights of the two subtrees. The 

routine stops when only one tree remains.          



The code for each symbol is obtained by traversing 

the final tree from the root to the corresponding symbol 

node (a leaf node). A bit ‘1’ corresponds to a left branch 

and a bit ‘0’ corresponds to a right branch or vice versa.  
 

3. MCC ARCHITECTURE 

 

The MCC (Microprogrammable Controller for Data 

Compression) architecture is composed by the following 

blocks: Microprocessor Module (MM); 

Microprogrammable Control Unit (MCU); Sequencing 

Logic (SL); Stack (SK); Tree Memory (TM); Memory 

Data Register (MDR); Memory Adress Register (MAR).  

Figure 1 shows the MCC architecture implemented in 

FPGA. 

  Figure 1. MCC architecture 

 

The Data Memory (DM), shown in Figure 1 is an 

external memory block that stores the data to be 

processed (coded/decoded) by the MCC. This memory is 

divided in two blocks: the Header Block and the 

Raw/Coded Data Block, as shown in Figure 2. 

The Header block contains the symbols probability. 

During encoding, the Raw/Coded Block contains the raw 

data that will be coded and, for decoding, it contains the 

coded data that will be decoded. 

 

 
Figure 2. Data Memory 

 

3.1. Microprocessor Module (MM) 

Figure 3 shows the behavioral VHDL descriptions used 

in the MM implementation [6]. 

The MM is responsible to temporarily store variables 

and to execute logic and arithmetic operations. Its 

contains sixteen identical 16-bits scratchpad registers, 

called RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, RK, 

RL, RM, RN, RO and RQ. The sixteen registers can be 

loaded by the C bus. The registers RA up to RH can 

output its contents onto the internal A bus and the 

registers RI up to RQ can output its contents onto B bus. 

 

Figure 3. Microprocessor module 

 

The ALU can perform 16 operations specified by the 

control lines. It generates the flags that will be used to 

control the flow of execution of the microprogram. The 

behavioral VHDL description of the ALU conducts to a 

“Carry Look Ahead” adder implementation increasing 

the arithmetic operations of the module. 
 

3.2. MAR and  MDR 

MAR and MDR control the data flow between the MCC 

and DM (Figure 1). The MAR stores the address of the 

DM that is read or written across the MDR. The MM can 

write to MAR, read and write in the MDR to exchange 

data with DM.  

  

3.3. TM and SK 

Figure 3 shows the interface between the MM module 

and the TM and SK modules. The TM stores the 

Huffman tree. Moreover, the TM stores a structure array 

that contains symbols with non-null probabilities and the 

respective address. This array is used to locate the node 

of the symbols in the Huffman tree.  

The SK is an efficient data structure that performs the 

storage of the variables. The SK is a Last in- First out 

(LIFO) structure that is used to traverse the Huffman 

tree. 

 

3.4. MCU 

The MCU controls the blocks of the MCC, the ALU 

operations and the data path using horizontal 

microinstructions, as shown in Figure 4. The 

microinstructions are divided in 11 fields. Each field 



controls only one block allowing concurrent operations 

of the blocks. Each field has a set of possible micro-

commands that form a set of instructions for that field. 

Each instruction has its equivalent mnemonic and users 

can write programs in Assembly.  

The Huffman algorithm is implemented by using the 

available microinstructions of each field. The resulting 

microprogram is stored in the MCU ROM. Both coded 

and decoded microprogram are sequentially stored in the 

same memory.   Other compression algorithms can be 

implemented by changing the content of the MCU ROM 

only. 

 

 
Figure 4. MCC microinstruction format 

 

3.5. SL 

SL determines which next microinstruction will be run. 

The output of this logic controls the MCC which routes 

either “current address + 1” or ADR, i.e. the address of 

the next microinstruction. The output flags of the MM, 

and the COND field of the microinstruction indicate the 

choice to be made.  

 

4. SYNTHESIS METHOD 

 

The MCC architecture was implemented in blocks, as 

shown in Figure 1, using the hardware description 

language VHDL [7]. The blocks were divided in sub-

blocks. The blocks and sub-blocks behavioral 

descriptions were made and their structural descriptions 

were constructed and validated using the Altera Quartus 

II 2.2 software [9].  

A semi-adaptative Huffman algorithm [1] was 

implemented using the MCC microinstructions, i.e. as a 

microprogram. The implementations of both coding and 

decoding, microprograms are done in four stages: 

 

1. Read the Header block in DM and put the 

symbols and its probability in TM; 

2. Sort the symbols in TM by crescent probability, 

using the BubbleSort algorithm; 

3. Create the Huffman tree and the array of 

symbols and addresses of their nodes in this 

tree. That array is used only in the coding stage. 

The tree and the array should be put in TM. 

4. Read the Raw/Coded Block of DM and 

code/decode the symbols using the Huffman 

Tree in TM.  

 

To support the development of the microprogram a 

tool called MccME (MCC Microprogram Editor) was 

implemented. The MccME was developed in Object 

Pascal. 

Each block of the MCC architecture has an 

instruction mnemonic set and an entire MCC 

microprogram can be written in Assembly. The MccME 

generates a “mif” file (Memory Initialization File) after 

compiling the program as shown in Figure 6. A “mif” file 

is an ASCII text file that specifies the initial content of 

the ROM block of the MCU, used as an input file for 

memory initialization in the Altera Compiler and 

Simulation tools [8]. 

 

Figure 6. Microprogram development 

 

5. RESULTS AND DISCUSSIONS 

 

The descriptions of the MCC were synthesized using 

Quartus II 2.2 software from Altera [9]. Results in terms 

of number of logic cells, number of memory bits utilized, 

numbers of pins and frequency of operation for four 

FPGA devices are shown in Figure 7. 

The results presented in Figure 7, show that MCC 

architecture uses less than 10% of the devices logic cells 

and from 50% up to 85% of the device memory bits.  

To validate the proposed architecture, we coded five 

electrocardiogram (ECG) records from MIT-BIH 

Arrhythmia Database [10] on MCC and on Winzip 9.0 

program. The ECG records are one-dimensional signals 

with 11 bits per sample. To optimize the compression, 

the prediction error was computed on the ECGs signals 

[11].    

ECG records with error prediction were used here 

because we intend to implement MCC plus a predictor in 

Holter portable ECG devices for long-term cardiac 

monitoring 

A Holter device records the ECG signal continuously 

for 24 or 48 hours. For high quality records the storage 

requirements may be prohibitive without data 

compression. 

The metric used to quantity confrontation between 

MCC and Winzip program was the compression ratio 

(CR). The CR is defined as the ratio between the number 

of bits in the original signal and the number of bits used 

to represent the compressed signal.  
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Figura 7. Results of MCC synthesis 

 

 

The average CR obtained to MCC architecture was 

2.62:1, while to WinZip program was 1.73:1. This result 

shows the efficiency of the MCC Huffman 

microprogram. 

 

6. CONCLUSIONS AND FUTURE WORKS 

 

An FPGA implementation of a microprogrammable 

controller that performs the Huffman Algorithms has 

been described. The results show that it is viable to 

incorporate this implementation in a single FPGA device. 

Furthermore, the use of FPGA devices brings many 

possibilities of reconfiguration. 

In the future, other data compression algorithms will 

be implemented, such as the arithmetic coding algorithm. 

Besides, we intend to adjust the flexible architecture 

proposed in this paper for the Open Core Protocol 

(OCP). 
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