
AN FPGA IMPLEMENTATION OF A MICROPROGRAMMABLE

CONTROLLER TO PERFORM LOSSLESS DATA COMPRESSION BASED

ON THE HUFFMAN ALGORITHM

Tiago Maritan Ugulino de Araújo, Eduardo Ribas Pinto, José Antônio Gomes de Lima and

Leonardo Vidal Batista

Departamento de Informática – CCEN – UFPB

Cidade Universitária, 58051-900

tiagomaritan@lavid.ufpb.br, ducaribas@yahoo.com.br, jose@di.ufpb.br and leonardo@di.ufpb.br

ABSTRACT

This work describes an FPGA implementation of a

Microprogrammable Controller to perform lossless data

compression based on the Huffman Algorithm. The

Huffman Algorithm is a lossless statistical coding

algorithm used in many modern compression systems,

such as the JPEG and MPEG-2 standards. The

Microprogrammable Controller architecture was

implemented in blocks, using the hardware description

language VHDL and the Huffman microprogram was

implemented using the microinstrutions of this

architecture. The description and functionalities of the

main blocks that compose its architecture are presented

as well as the simulation and synthesis methodology. By

changing the microcode, the controller can also

implement other compression algorithms.

1. INTRODUCTION

Data compression is a key component in many

applications dealing with large amounts of data that must

be efficiently stored or transmitted. With the advances in

microelectronics, new integrated circuit technologies

(such as FPGA - Field Programmable Gate Array), and

new CAD (Computer Aided Design) tools, complex data

compression algorithms can be implemented in high-

level languages and mapped to circuits in an efficient

way.

Most hardware implementations of data compression

methods are not flexible enough to allow quick

adjustments in the basic algorithm. On the other hand,

the use of microprogrammable controllers provides a

very flexible way to implement several data compression

algorithms, such as Golomb, Golomb-Rice, Huffman and

Arithmetic Coding [1].

Huffman algorithm [2] is the optimum integer-length

coding algorithm, generally achieving data rates close to

the message entropy [3]. Huffman coding is present in

many modern compression methods, such as the JPEG

and MPEG-2 standards.

The Huffman algorithm creates a different binary tree

for each information source to be coded. This binary tree

associates a code for each symbol of the source alphabet.

This binary tree is not easy to implement in hardware, so

most hardware implementations of the Huffman

algorithm [4],[5] use static codes stored in a table. This

solution codes any message in the same manner,

independently of the characteristics of each specific

information source, which is reflected in loss of

compression.

This paper presents an FPGA implementation of a

microprogrammable controller to perform lossless

compression based in the Huffman algorithm. The

Huffman binary trees are generated dynamically, i.e., a

different binary tree for each information source.

The rest of this paper is organized as follows. In

Section 2 the Huffman Algorithm is described. Section 3

presents the architecture of the MCC

(Microprogrammable Controller for Data Compression),

details of its implementation. Section 4 presents the

simulation and synthesis methodology. Section 5

presents synthesis results in terms of the FPGA devices

used. Finally, conclusions are presented in Section 6.

2. THE HUFFMAN ALGORITHM

The Huffman algorithm is a lossless statistical coding

algorithm that depends on the source symbols

probabilities. With lossless compression, the original

information can be perfectly reconstructed from the

coded message.

Huffman algorithm associates a weighted tree for

each symbol of the information source. Initially, each

weighted tree has only one node with weight equal to the

associated symbol probability. In each iteration of the

algorithm, the two trees with the smallest weights

become the right and left subtrees of a new tree whose

weight is the sum of the weights of the two subtrees. The

routine stops when only one tree remains.

The code for each symbol is obtained by traversing

the final tree from the root to the corresponding symbol

node (a leaf node). A bit ‘1’ corresponds to a left branch

and a bit ‘0’ corresponds to a right branch or vice versa.

3. MCC ARCHITECTURE

The MCC (Microprogrammable Controller for Data

Compression) architecture is composed by the following

blocks: Microprocessor Module (MM);

Microprogrammable Control Unit (MCU); Sequencing

Logic (SL); Stack (SK); Tree Memory (TM); Memory

Data Register (MDR); Memory Adress Register (MAR).

Figure 1 shows the MCC architecture implemented in

FPGA.

 Figure 1. MCC architecture

The Data Memory (DM), shown in Figure 1 is an

external memory block that stores the data to be

processed (coded/decoded) by the MCC. This memory is

divided in two blocks: the Header Block and the

Raw/Coded Data Block, as shown in Figure 2.

The Header block contains the symbols probability.

During encoding, the Raw/Coded Block contains the raw

data that will be coded and, for decoding, it contains the

coded data that will be decoded.

Figure 2. Data Memory

3.1. Microprocessor Module (MM)

Figure 3 shows the behavioral VHDL descriptions used

in the MM implementation [6].

The MM is responsible to temporarily store variables

and to execute logic and arithmetic operations. Its

contains sixteen identical 16-bits scratchpad registers,

called RA, RB, RC, RD, RE, RF, RG, RH, RI, RJ, RK,

RL, RM, RN, RO and RQ. The sixteen registers can be

loaded by the C bus. The registers RA up to RH can

output its contents onto the internal A bus and the

registers RI up to RQ can output its contents onto B bus.

Figure 3. Microprocessor module

The ALU can perform 16 operations specified by the

control lines. It generates the flags that will be used to

control the flow of execution of the microprogram. The

behavioral VHDL description of the ALU conducts to a

“Carry Look Ahead” adder implementation increasing

the arithmetic operations of the module.

3.2. MAR and MDR

MAR and MDR control the data flow between the MCC

and DM (Figure 1). The MAR stores the address of the

DM that is read or written across the MDR. The MM can

write to MAR, read and write in the MDR to exchange

data with DM.

3.3. TM and SK

Figure 3 shows the interface between the MM module

and the TM and SK modules. The TM stores the

Huffman tree. Moreover, the TM stores a structure array

that contains symbols with non-null probabilities and the

respective address. This array is used to locate the node

of the symbols in the Huffman tree.

The SK is an efficient data structure that performs the

storage of the variables. The SK is a Last in- First out

(LIFO) structure that is used to traverse the Huffman

tree.

3.4. MCU

The MCU controls the blocks of the MCC, the ALU

operations and the data path using horizontal

microinstructions, as shown in Figure 4. The

microinstructions are divided in 11 fields. Each field

controls only one block allowing concurrent operations

of the blocks. Each field has a set of possible micro-

commands that form a set of instructions for that field.

Each instruction has its equivalent mnemonic and users

can write programs in Assembly.

The Huffman algorithm is implemented by using the

available microinstructions of each field. The resulting

microprogram is stored in the MCU ROM. Both coded

and decoded microprogram are sequentially stored in the

same memory. Other compression algorithms can be

implemented by changing the content of the MCU ROM

only.

Figure 4. MCC microinstruction format

3.5. SL

SL determines which next microinstruction will be run.

The output of this logic controls the MCC which routes

either “current address + 1” or ADR, i.e. the address of

the next microinstruction. The output flags of the MM,

and the COND field of the microinstruction indicate the

choice to be made.

4. SYNTHESIS METHOD

The MCC architecture was implemented in blocks, as

shown in Figure 1, using the hardware description

language VHDL [7]. The blocks were divided in sub-

blocks. The blocks and sub-blocks behavioral

descriptions were made and their structural descriptions

were constructed and validated using the Altera Quartus

II 2.2 software [9].

A semi-adaptative Huffman algorithm [1] was

implemented using the MCC microinstructions, i.e. as a

microprogram. The implementations of both coding and

decoding, microprograms are done in four stages:

1. Read the Header block in DM and put the

symbols and its probability in TM;

2. Sort the symbols in TM by crescent probability,

using the BubbleSort algorithm;

3. Create the Huffman tree and the array of

symbols and addresses of their nodes in this

tree. That array is used only in the coding stage.

The tree and the array should be put in TM.

4. Read the Raw/Coded Block of DM and

code/decode the symbols using the Huffman

Tree in TM.

To support the development of the microprogram a

tool called MccME (MCC Microprogram Editor) was

implemented. The MccME was developed in Object

Pascal.

Each block of the MCC architecture has an

instruction mnemonic set and an entire MCC

microprogram can be written in Assembly. The MccME

generates a “mif” file (Memory Initialization File) after

compiling the program as shown in Figure 6. A “mif” file

is an ASCII text file that specifies the initial content of

the ROM block of the MCU, used as an input file for

memory initialization in the Altera Compiler and

Simulation tools [8].

Figure 6. Microprogram development

5. RESULTS AND DISCUSSIONS

The descriptions of the MCC were synthesized using

Quartus II 2.2 software from Altera [9]. Results in terms

of number of logic cells, number of memory bits utilized,

numbers of pins and frequency of operation for four

FPGA devices are shown in Figure 7.

The results presented in Figure 7, show that MCC

architecture uses less than 10% of the devices logic cells

and from 50% up to 85% of the device memory bits.

To validate the proposed architecture, we coded five

electrocardiogram (ECG) records from MIT-BIH

Arrhythmia Database [10] on MCC and on Winzip 9.0

program. The ECG records are one-dimensional signals

with 11 bits per sample. To optimize the compression,

the prediction error was computed on the ECGs signals

[11].

ECG records with error prediction were used here

because we intend to implement MCC plus a predictor in

Holter portable ECG devices for long-term cardiac

monitoring

A Holter device records the ECG signal continuously

for 24 or 48 hours. For high quality records the storage

requirements may be prohibitive without data

compression.

The metric used to quantity confrontation between

MCC and Winzip program was the compression ratio

(CR). The CR is defined as the ratio between the number

of bits in the original signal and the number of bits used

to represent the compressed signal.

0

10

20

30

40

50

60

70

80

90

Stratix – EP1S10F484C5 Cyclone -

EP1C12F324C6

Apex20KE –

E20K300EQC240-1X

Excalibur Arm -

EPXA4F672C1

Devices

LCs used (%)

Memory used (%)

I/O pins used (%)

Clock frequency

(MHz)

Figura 7. Results of MCC synthesis

The average CR obtained to MCC architecture was

2.62:1, while to WinZip program was 1.73:1. This result

shows the efficiency of the MCC Huffman

microprogram.

6. CONCLUSIONS AND FUTURE WORKS

An FPGA implementation of a microprogrammable

controller that performs the Huffman Algorithms has

been described. The results show that it is viable to

incorporate this implementation in a single FPGA device.

Furthermore, the use of FPGA devices brings many

possibilities of reconfiguration.

In the future, other data compression algorithms will

be implemented, such as the arithmetic coding algorithm.

Besides, we intend to adjust the flexible architecture

proposed in this paper for the Open Core Protocol

(OCP).

7. REFERENCES

[1] T. Bell, J. G. Clearly and I. H. Witten, “Text

Compression”. Prentice Hall Reference Series, 1990.

[2] D. A. Huffman, “A Method for the Construction of

Minimum Redundancy Codes”, Proceedings of the

Institute of Radio Engineers, n. 40, pp. 1098-1101, 1952.

[3] C. E. Shannon, C. E. “A Mathematical Theory of

Communication”, Bell Syst. Tech. J., pp. 379-423, 1948.

[4] S. H. Sun and S.J. Lee. “A JPEG Chip for Image

Compression and Decompression”, Journal of VLSI

Signal Processing, Kluwer Academic Publishers, pp. 43–

60, August 2003.

[5] C.J. Lian, Y.W. Huang, H.C. Fang, Y.C. Chang and

L.G. Chen, “JPEG, MPEG-4, and H.264 Codec IP

Development”, Proceedings of the Design, Automation

and Test in Europe Conference and Exhibition, IEEE

Computer Society, March 2005.

[6] J. A. G. Lima, E. U. K. Melcher and H. S. Silva, “An

FPGA Implementation of the ATM Layer”, XIII

Symposium on Integrated Circuit Design and System

Design(SBCCI 2000), Amazonas-Brazil, pp. 185-190,

September 2000,.

[7] J. H. Moreno, M. Ercegovac and T. Lang,

“Introdução aos Sistemas Digitais”. 1a ed. Bookman,

2000.

[8] Altera Corporation. "Altera Data Book", 1995.

[9] Altera Corporation. “Using Quartus II Verilog HDL

& VHDL Integrated Synthesis”, 2002.

[10] G. B. Moody, R.G. Mark, MIT-BIH Arrhythmia

Database Directory. Second Edition, BMEC TR010,

Massachusetts Institute of Technology, Biomedical

Engineering Center, August 1988.

[11] M.M. Meira, J.A.G.Lima and L.V.Batista. “An

FPGA Implementation of a Lossless Electrocardiogram

Compressor based on Prediction and Golomb-Rice

Coding for Telemedicine Applications”, XXI Simpósio

Brasileiro de Telecomunicações (SBT’04), Pará-Brasil,

September 2004.

