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ABSTRACT 

 

This paper presents a comprehensive investigation of how 

transistor level optimizations can be used to increase design 

quality of CMOS logic gate networks. Different properties of 

transistor networks are used to explain features and limitations 

of previous methods. We describe which figures of merit, 

including the logical effort, affect the design quality of a cell 

transistor network. Further, we propose and compare two 

different approaches that generate transistor network with 

guaranteed theoretical minimum length transistor chains, 

showing it reduces significantly the logical effort of the 

networks. 
 

1. INTRODUCTION 
 

VLSI design has firmly established a dominant role in the 

electronics industry. Automated tools have held designers to 

manipulate more transistors on a design project and shorten the 

design cycle. In particular, logic synthesis tools have contributed 

significantly to reduce the cycle time. In full-custom designs, 

manual generation of transistor netlists for each functional block 

is performed, but this is an extremely time-consuming task. In 

this sense, it becomes comfortable to have efficient algorithms 

to derive transistor networks automatically.  

Furthermore, some logic synthesis tools are extensively based 

on using Binary Decision Diagrams (BDDs) [1]. Classical 

BDDs based on Shannon’s decomposition naturally correspond 

to circuits built by Shannon’s decomposition algorithm. 

Therefore, not only BDDs can be used as compact and 

convenient representation of logic functions, but as a structure 

for direct synthesis of logic cells and circuits. Most methods for 

generation of transistor networks from BDDs use a non-disjoint 

pull-up/pull-down plane. This is the case of the methods 

presented in [2-7]. Some alternative methods presented in [8-11] 

derive disjoint planes: a pull-down composed of NMOS 

switches and a pull-up composed of PMOS switches. The 

drawback of these methods is the requirement of a special kind 

of BDDs with a serial/parallel structure. This way, the methods 

in [8-11] are not applicable to the widely used ROBDDs 

(Reduced and Ordered BDDs). The approaches in [12] and [13] 

use disjoint planes with ROBDDs, with subsequent 

simplifications. The simplifications performed by [12] are based 

on permissible functions, while the simplifications proposed in 

[13] are based on the unateness property of logic functions.  

In this paper, we describe two different methods for transistor 

network generation that respect the lower bound for the number 

of serial connected switches in a given logic cell. In addition, six 

kinds of CMOS network topologies are compared using some 

figures of merit, including the logical effort [14] for the cell. 

 

2. BDDS AND TRANSISTOR NETWORKS 
 

There are several methods for deriving transistors networks from 

BDDs in the literature. Some of them are closely related to the 

use of multiplexer-based logic. These methods may require 

additional area because the number of necessary switches to 

implement a multiplexer is noticeably expensive. Other 

approaches use direct switches association to BDD arcs to build 

the logic cells. These solutions are more feasible since the total 

number of transistors required for the implementation can be 

drastically reduced if compared to multiplexer-based solution. In 

this context, the basic action when deriving a transistor network 

from a BDD is to associate a controlled switch to each arc of a 

BDD node. This concept is illustrated in Fig. 1, which shows a 

BDD node and four possible ways to associate transistor 

switches: CMOS pair, NMOS only, PMOS only and mixed 

PMOS/NMOS. 

BDD arcs connecting terminal nodes (0-terminal and 1-terminal) 

may be connected to VDD or GND. Usually, NMOS transistors 

are associated to BDD arcs leading to 0-terminal node, while 

PMOS transistors are associated to arcs leading to 1-terminal 

node. The main reason for this sort of association is to guarantee 

a good conduction from the power sources (VDD and GND) to 

the internal nodes. The exception occurs in the NPTL-like logic 

styles (NMOS Pass Transistor Logic), which are composed of 

NMOS transistors only. Fig. 2 illustrates this concept, where a 

NPTL network (Fig. 2.b) is derived from a BDD (Fig. 2.a). 

Drain inputs may be used to reduce the number of transistors in 

a cell derived from a BDD. When a node of a BDD represents a 

function corresponding to a single literal, like a  or a , it is not 

necessary to use any switch to implement the node. The 

electrical node corresponding to the literal may be connected 

directly to the drains of the transistors corresponding to arcs in 

the BDD that point to the literal node. This is illustrated in Fig. 

2.c, where the node C generates a drain input in the network. 

The drawback of drain inputs is that the fanin capacitance they 

add to the driving node is not constant. That means that the 

capacitance seen by the driving node is variable and depends on 

the values of other inputs controlling the transistor in a drain 



input. This may cause several electrical problems resulting from 

the different slopes that will occur due to the variability in the 

fanin capacitance. Well defined input capacitances is a 

requirement for commercially available static timing analysis 

tools. 
 

 

 

Figure 1. BDD node and associated switches. 

 

 

 

 

Figure 2. Drain inputs in a network derived from a BDD. 

 

 

A common mistake about drain inputs is the assumption that the 

use of drain inputs would shorten the paths from the power 

sources (VDD or GND) to the output of the network. This is a 

pitfall, in the sense that by using drain inputs the signal driving 

the drain is not a power source, but a logic signal. A logic signal 

is always distant from the power sources by at least one switch 

responsible for connecting or disconnecting it to the power 

sources, as it may assume both logic values. This way, the 

number of serially connected switches between the power 

sources (VDD or GND) and the output of the network is not 

reduced by using drain inputs. 

When a PTL (Pass Transistor Logic) transistor network is built 

with a pair of PMOS and NMOS transistors associated to BDD 

edges, there is the possibility to derive disjoint networks. The 

procedure is straightforward, as it is illustrated in Fig. 3. To 

build the pull-up plane PMOS transistors are associated to BDD 

arcs (Fig. 3.b), while to build the pull-down plane NMOS 

transistors are used (Fig. 3.c). 

As an effect of using disjoint planes, the number of transistors 

into a logic cell remains the same, but the number of nodes 

increases. As a result, the internal capacitance per node is 

smaller. One of the advantages of using disjoint planes is the 

reduction of the capacitances of internal nodes. Another 

important point is that, as the number of nodes increases while 

the number of elements remains the same, the number of 

connections to be performed among elements is reduced. This 

effect is visible in Fig. 3, where it is clear that the use of disjoint 

planes implies on the reduction of connections between PMOS 

and NMOS active area. This is a benefit from a layout point of 

view. Finally, by dividing an internal node into two different 

ones, the switching activity probability is reduced, since there is 

the possibility that just one of them is switched. This is a benefit 

from a power consumption point of view. Apart from that, by 

using disjoint planes, it is possible to take advantage of the 

reductions presented in the next section in order to optimize the 

transistor networks. 
 

 

 

Figure 3. Network derived from a BDD using 

disjoint pull-up and pull-down networks. 

 

3. MINIMUM TRANSISTOR CHAIN NETWORKS  
 

Two methods for generating transistor networks with minimum 

transistor chains are discussed bellow.  

 

3.1. BY SOP FACTORIZATION 

 

It is a straightforward process to generate a transistor network 

from a SOP or from a factored form. In order to generate 

transistor networks coping with the lower bounds presented in 

[15], it is sufficient to generate minimum cube literal SOPs for 

the on-set and for the off-set. This will guarantee minimum 

length chains. Factorization is applied after computing the 

minimum cube literal cost SOP, as a second step to reduce the 

overall number of transistors by sharing some transistors among 

different branches. Factorization also contributes to minimize 

the logical effort of the input controlling the shared transistor. 

As the lower bound is dependent on using a minimum cube 

literal cost SOP, the factorization must be algebraic only. The 

use of Boolean factorization could lead to a different cover with 

non minimum cube literal cost. Boolean factorization could be 

used if the maximum length transistor chain is verified to remain 

the same after the factorization. Fig. 4 illustrates this process.  

 

3.2. FROM BDDs 

 

The method to generate disjoint transistor networks from BDDs 

is based on the methods presented in [13,16]. The basic 



procedure is presented in Fig.5. The method performs, as a first 

step, the straightforward generation of PU and PD networks 

from BDDs. As a second step, short and open circuits are 

inserted for unate nodes, leading to the removal of some 

transistors, as described in [13,16]. The main difference in the 

algorithm proposed here is on step 3. The methods proposed in 

[13,16] will not perform all the short and open circuit 

simplifications, if sneak paths are introduced.  

The algorithm presented here adopts a different strategy, in 

order to reduce the length of longest transistor chain to achieve 

the lower bound. It duplicates some nodes of the BDD to avoid 

the introduction of sneak paths and force the achievement of the 

lower bounds. The duplication of nodes in the BDD does not 

necessarily imply in the increase in the number of transistors, as 

some transistors could be removed and substituted by short or 

open circuits. Sometimes the lower bounds are achieved even 

without using all the possible unateness reduction cases, i.e. it is 

possible to not apply all short and open circuit simplifications 

and still achieve the lower bound. The reordering of the BDD in 

step 4 is very rarely used, as most of the times the algorithm 

achieves the lower bound without reordering. The effect of 

duplicating BDD nodes and applying unateness simplification is 

to make the paths in a BDD correspond to prime cubes, as BDD 

would normally have paths corresponding to non-prime cubes. 

Notice that the BDD ISOP algorithm is able to generate a prime 

cover from a BDD, but if this is used to generate the transistor 

networks it would result in the method described in the previous 

section (without the factorization step). Although the procedure 

proposed here is rather heuristic, the execution time is not 

prohibitive. 

 

Step 1: Generate a minimum cube literal cost for 

on-set. 

Step 2: Perform algebraic factorization (can be 

Boolean if LB is checked) 

Step 3: Derive transistor network for PU 

Step 4: Generate a minimum cube literal cost for 

off-set. 

Step 5: Perform algebraic factorization (idem 

step 2).  

Step 6: Derive transistor network for PD 

Step 7: If one (or both) of the networks has a 

dual respecting the LB, use both planes from the 

same equation (chose equation with less 

transistors). Otherwise use one network from 

each equation. 

Figure 4. Algorithm for generation of minimum transistor 

chain networks by SOP factorization. 

 

 

Step 1: Generate PU and PD from BDD. 

Step 2: Apply short and open circuits for unate 

nodes to remove transistors. 

Step 3: If the circuit has sneak paths, 

duplicate some BDD nodes and go to step 1. 

Step 4: If the circuit does not respect the 

lower bounds, reorder the BDD and go to step 1. 

Step 5: Deliver network 

Figure 5. Algorithm for generation of minimum transistor 

chain networks from BDDs.  

4. RESULTS  
 

A comparative experiment to show how the topology of 

transistor networks influences the logical effort of logic gates 

was performed. Six different network topologies were 

compared. These methods are described below.  

CSP1 – CMOS series-parallel. Both on-set and off-set equations 

are derived and factorized, the one that respects the lower bound 

and give the smaller transistor count is chosen whenever 

possible. When there is no solution respecting the lower bounds, 

a solution is chosen to respect the LB in the PU network. 

CSP2 – Same as CSP1, except that when there is no solution 

respecting the lower bounds, a solution is chosen to minimize 

the series transistor difference in both networks with respect to 

the LB. 

NCSP – Non complementary series-parallel solution, using one 

plane from the on-set equation and one plane from the off-set 

equation enforce the achievement of the lower bounds. The CSP 

version is used whenever it respects the lower bounds. 

Algorithm in Fig. 2. 

CMOS from BDDs – Straightforward generation of PU and PD 

planes from BDDs. 

Optimized CMOS from BDDs – Generate pull-up and pull 

down planes from BDDs and simplify them using unateness 

properties to insert short and open circuits. Do not apply any 

possible optimization that introduces sneak paths. See [13,16] 

for details. 

CMOS LB from BDDs – Force all the possible unateness 

reductions, duplicating nodes to guarantee the achievement of 

the lower bounds. Algorithm in Fig. 5. 

The set of evaluated functions include all the 3982 P-classes 

representing the set of non-constant 4-input logic functions. For 

all the 3982 target functions, the six network types described 

above were generated. Results are reported in Table 1. The data 

for each generation method are described in one column. For 

each method, the sum of the total number of transistors, length 

of longest transistor chain for pull-up (∑PU), length of the 

longest transistor chain for pull-down (∑PD), logical effort 

(average per cell input), number of functions that do not respect 

the lower bounds and the number of unfeasible functions is 

shown. The CMOS lower bound from BDDs is a clear winner 

for total number of transistors, this happens because even if 

some nodes are duplicated, it is possible to remove some 

transistors, which compensates the duplication with advantages. 

The two methods presented in Fig. 4 and Fig. 5 respect the 

lower bound, so these methods have equal ∑PU lengths and 

∑PD lengths, as shown in Table 1. However the total number of 

transistors is smaller for the CMOS LB from BDDs, which 

explains the advantage this method also has in terms of logical 

effort. Notice that the CSP1 respect the LB for the PU, as 

expected from its criterion of choice. The CSP2 method presents 

a reduced ∑PD length through a tradeoff that increases the ∑PU 

length compared to CSP1. This tradeoff results in an advantage 

of CSP2 with respect to CSP1, when logical effort is considered, 

as it can be observed in Table 1. All methods produce functions 

not respecting the lower bounds, with exception of NCSP and 

CMOS LB from BDDs. The CMOS from BDD method is the 

one that produces the highest number of functions not respecting 



Table 1. Comparison of six different methods for cell level transistor network generation. 

 Logic 

Figures of merit CSP1 [8] CSP2 [8] NCSP [5] 
CMOS from 

BDDs [3,7] 

Optimized CMOS 

from BDDs [3,7] 

CMOS LB 

from BDDs 

∑ # transistors 75530 75456 75889 76774 73438 72307 

∑PU length 11954 13084 11954 15538 14227 11954 

∑PD length 17009 15931 14242 15538 15321 14242 

Aver. logical effort 4.54 4.37 3.83 4.35 4.07 3.68 

#f not respecting LB 2312 2312 0 3148 2373 0 

# of unfeasible f 1546 791 0 0 0 0 

 

the lower bounds. However, all the functions it produces have at 

most 4 transistor in series, and therefore they are considered 

feasible with a single cell. The only methods to produce networks 

with more than 4 transistors in series are CSP1 and CSP2. This is 

a result of using dual networks, which will result in excessive 

number of transistors in series when making a dual of a network 

that has many transistors in parallel. We have also observed that 

for networks with the same chain lengths, the one with a smaller 

transistor count is the winner. 

 

5. CONCLUSIONS 
 

We have shown that the logical effort to compute a function 

depends on the chosen topology. The use of minimum transistor 

lengths while reducing the overall number of transistors reduces 

significantly the logical effort of the resulting networks, a 

reduction of 15 to 19% is obtained when compared to CMOS 

series-parallel. A reduced logical effort is directly transposed to a 

reduction in the best achievable delay of a circuit.  
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