
Analysis of Transistor Networks Generation

Leomar S. da Rosa Junior
1,2

, Felipe R. Schneider
3
, Renato P. Ribas

1,2
, André I. Reis

3

{leomarjr, felipers, rpribas}@inf.ufrgs.br , are@nangate.com

1
 Nangate Research Lab – Instituto de Informática – Universidade Federal do Rio Grande do Sul, Brazil

2
 Programa de Pós-Graduação em Microeletrônica – Universidade Federal do Rio Grande do Sul, Brazil

3
 Nangate Inc. – Menlo Park, CA, USA

ABSTRACT

This paper presents a comprehensive investigation of how

transistor level optimizations can be used to increase design

quality of CMOS logic gate networks. Different properties of

transistor networks are used to explain features and limitations

of previous methods. We describe which figures of merit,

including the logical effort, affect the design quality of a cell

transistor network. Further, we propose and compare two

different approaches that generate transistor network with

guaranteed theoretical minimum length transistor chains,

showing it reduces significantly the logical effort of the

networks.

1. INTRODUCTION

VLSI design has firmly established a dominant role in the

electronics industry. Automated tools have held designers to

manipulate more transistors on a design project and shorten the

design cycle. In particular, logic synthesis tools have contributed

significantly to reduce the cycle time. In full-custom designs,

manual generation of transistor netlists for each functional block

is performed, but this is an extremely time-consuming task. In

this sense, it becomes comfortable to have efficient algorithms

to derive transistor networks automatically.

Furthermore, some logic synthesis tools are extensively based

on using Binary Decision Diagrams (BDDs) [1]. Classical

BDDs based on Shannon’s decomposition naturally correspond

to circuits built by Shannon’s decomposition algorithm.

Therefore, not only BDDs can be used as compact and

convenient representation of logic functions, but as a structure

for direct synthesis of logic cells and circuits. Most methods for

generation of transistor networks from BDDs use a non-disjoint

pull-up/pull-down plane. This is the case of the methods

presented in [2-7]. Some alternative methods presented in [8-11]

derive disjoint planes: a pull-down composed of NMOS

switches and a pull-up composed of PMOS switches. The

drawback of these methods is the requirement of a special kind

of BDDs with a serial/parallel structure. This way, the methods

in [8-11] are not applicable to the widely used ROBDDs

(Reduced and Ordered BDDs). The approaches in [12] and [13]

use disjoint planes with ROBDDs, with subsequent

simplifications. The simplifications performed by [12] are based

on permissible functions, while the simplifications proposed in

[13] are based on the unateness property of logic functions.

In this paper, we describe two different methods for transistor

network generation that respect the lower bound for the number

of serial connected switches in a given logic cell. In addition, six

kinds of CMOS network topologies are compared using some

figures of merit, including the logical effort [14] for the cell.

2. BDDS AND TRANSISTOR NETWORKS

There are several methods for deriving transistors networks from

BDDs in the literature. Some of them are closely related to the

use of multiplexer-based logic. These methods may require

additional area because the number of necessary switches to

implement a multiplexer is noticeably expensive. Other

approaches use direct switches association to BDD arcs to build

the logic cells. These solutions are more feasible since the total

number of transistors required for the implementation can be

drastically reduced if compared to multiplexer-based solution. In

this context, the basic action when deriving a transistor network

from a BDD is to associate a controlled switch to each arc of a

BDD node. This concept is illustrated in Fig. 1, which shows a

BDD node and four possible ways to associate transistor

switches: CMOS pair, NMOS only, PMOS only and mixed

PMOS/NMOS.

BDD arcs connecting terminal nodes (0-terminal and 1-terminal)

may be connected to VDD or GND. Usually, NMOS transistors

are associated to BDD arcs leading to 0-terminal node, while

PMOS transistors are associated to arcs leading to 1-terminal

node. The main reason for this sort of association is to guarantee

a good conduction from the power sources (VDD and GND) to

the internal nodes. The exception occurs in the NPTL-like logic

styles (NMOS Pass Transistor Logic), which are composed of

NMOS transistors only. Fig. 2 illustrates this concept, where a

NPTL network (Fig. 2.b) is derived from a BDD (Fig. 2.a).

Drain inputs may be used to reduce the number of transistors in

a cell derived from a BDD. When a node of a BDD represents a

function corresponding to a single literal, like a or a , it is not

necessary to use any switch to implement the node. The

electrical node corresponding to the literal may be connected

directly to the drains of the transistors corresponding to arcs in

the BDD that point to the literal node. This is illustrated in Fig.

2.c, where the node C generates a drain input in the network.

The drawback of drain inputs is that the fanin capacitance they

add to the driving node is not constant. That means that the

capacitance seen by the driving node is variable and depends on

the values of other inputs controlling the transistor in a drain

input. This may cause several electrical problems resulting from

the different slopes that will occur due to the variability in the

fanin capacitance. Well defined input capacitances is a

requirement for commercially available static timing analysis

tools.

Figure 1. BDD node and associated switches.

Figure 2. Drain inputs in a network derived from a BDD.

A common mistake about drain inputs is the assumption that the

use of drain inputs would shorten the paths from the power

sources (VDD or GND) to the output of the network. This is a

pitfall, in the sense that by using drain inputs the signal driving

the drain is not a power source, but a logic signal. A logic signal

is always distant from the power sources by at least one switch

responsible for connecting or disconnecting it to the power

sources, as it may assume both logic values. This way, the

number of serially connected switches between the power

sources (VDD or GND) and the output of the network is not

reduced by using drain inputs.

When a PTL (Pass Transistor Logic) transistor network is built

with a pair of PMOS and NMOS transistors associated to BDD

edges, there is the possibility to derive disjoint networks. The

procedure is straightforward, as it is illustrated in Fig. 3. To

build the pull-up plane PMOS transistors are associated to BDD

arcs (Fig. 3.b), while to build the pull-down plane NMOS

transistors are used (Fig. 3.c).

As an effect of using disjoint planes, the number of transistors

into a logic cell remains the same, but the number of nodes

increases. As a result, the internal capacitance per node is

smaller. One of the advantages of using disjoint planes is the

reduction of the capacitances of internal nodes. Another

important point is that, as the number of nodes increases while

the number of elements remains the same, the number of

connections to be performed among elements is reduced. This

effect is visible in Fig. 3, where it is clear that the use of disjoint

planes implies on the reduction of connections between PMOS

and NMOS active area. This is a benefit from a layout point of

view. Finally, by dividing an internal node into two different

ones, the switching activity probability is reduced, since there is

the possibility that just one of them is switched. This is a benefit

from a power consumption point of view. Apart from that, by

using disjoint planes, it is possible to take advantage of the

reductions presented in the next section in order to optimize the

transistor networks.

Figure 3. Network derived from a BDD using

disjoint pull-up and pull-down networks.

3. MINIMUM TRANSISTOR CHAIN NETWORKS

Two methods for generating transistor networks with minimum

transistor chains are discussed bellow.

3.1. BY SOP FACTORIZATION

It is a straightforward process to generate a transistor network

from a SOP or from a factored form. In order to generate

transistor networks coping with the lower bounds presented in

[15], it is sufficient to generate minimum cube literal SOPs for

the on-set and for the off-set. This will guarantee minimum

length chains. Factorization is applied after computing the

minimum cube literal cost SOP, as a second step to reduce the

overall number of transistors by sharing some transistors among

different branches. Factorization also contributes to minimize

the logical effort of the input controlling the shared transistor.

As the lower bound is dependent on using a minimum cube

literal cost SOP, the factorization must be algebraic only. The

use of Boolean factorization could lead to a different cover with

non minimum cube literal cost. Boolean factorization could be

used if the maximum length transistor chain is verified to remain

the same after the factorization. Fig. 4 illustrates this process.

3.2. FROM BDDs

The method to generate disjoint transistor networks from BDDs

is based on the methods presented in [13,16]. The basic

procedure is presented in Fig.5. The method performs, as a first

step, the straightforward generation of PU and PD networks

from BDDs. As a second step, short and open circuits are

inserted for unate nodes, leading to the removal of some

transistors, as described in [13,16]. The main difference in the

algorithm proposed here is on step 3. The methods proposed in

[13,16] will not perform all the short and open circuit

simplifications, if sneak paths are introduced.

The algorithm presented here adopts a different strategy, in

order to reduce the length of longest transistor chain to achieve

the lower bound. It duplicates some nodes of the BDD to avoid

the introduction of sneak paths and force the achievement of the

lower bounds. The duplication of nodes in the BDD does not

necessarily imply in the increase in the number of transistors, as

some transistors could be removed and substituted by short or

open circuits. Sometimes the lower bounds are achieved even

without using all the possible unateness reduction cases, i.e. it is

possible to not apply all short and open circuit simplifications

and still achieve the lower bound. The reordering of the BDD in

step 4 is very rarely used, as most of the times the algorithm

achieves the lower bound without reordering. The effect of

duplicating BDD nodes and applying unateness simplification is

to make the paths in a BDD correspond to prime cubes, as BDD

would normally have paths corresponding to non-prime cubes.

Notice that the BDD ISOP algorithm is able to generate a prime

cover from a BDD, but if this is used to generate the transistor

networks it would result in the method described in the previous

section (without the factorization step). Although the procedure

proposed here is rather heuristic, the execution time is not

prohibitive.

Step 1: Generate a minimum cube literal cost for

on-set.

Step 2: Perform algebraic factorization (can be

Boolean if LB is checked)

Step 3: Derive transistor network for PU

Step 4: Generate a minimum cube literal cost for

off-set.

Step 5: Perform algebraic factorization (idem

step 2).

Step 6: Derive transistor network for PD

Step 7: If one (or both) of the networks has a

dual respecting the LB, use both planes from the

same equation (chose equation with less

transistors). Otherwise use one network from

each equation.

Figure 4. Algorithm for generation of minimum transistor

chain networks by SOP factorization.

Step 1: Generate PU and PD from BDD.

Step 2: Apply short and open circuits for unate

nodes to remove transistors.

Step 3: If the circuit has sneak paths,

duplicate some BDD nodes and go to step 1.

Step 4: If the circuit does not respect the

lower bounds, reorder the BDD and go to step 1.

Step 5: Deliver network

Figure 5. Algorithm for generation of minimum transistor

chain networks from BDDs.

4. RESULTS

A comparative experiment to show how the topology of

transistor networks influences the logical effort of logic gates

was performed. Six different network topologies were

compared. These methods are described below.

CSP1 – CMOS series-parallel. Both on-set and off-set equations

are derived and factorized, the one that respects the lower bound

and give the smaller transistor count is chosen whenever

possible. When there is no solution respecting the lower bounds,

a solution is chosen to respect the LB in the PU network.

CSP2 – Same as CSP1, except that when there is no solution

respecting the lower bounds, a solution is chosen to minimize

the series transistor difference in both networks with respect to

the LB.

NCSP – Non complementary series-parallel solution, using one

plane from the on-set equation and one plane from the off-set

equation enforce the achievement of the lower bounds. The CSP

version is used whenever it respects the lower bounds.

Algorithm in Fig. 2.

CMOS from BDDs – Straightforward generation of PU and PD

planes from BDDs.

Optimized CMOS from BDDs – Generate pull-up and pull

down planes from BDDs and simplify them using unateness

properties to insert short and open circuits. Do not apply any

possible optimization that introduces sneak paths. See [13,16]

for details.

CMOS LB from BDDs – Force all the possible unateness

reductions, duplicating nodes to guarantee the achievement of

the lower bounds. Algorithm in Fig. 5.

The set of evaluated functions include all the 3982 P-classes

representing the set of non-constant 4-input logic functions. For

all the 3982 target functions, the six network types described

above were generated. Results are reported in Table 1. The data

for each generation method are described in one column. For

each method, the sum of the total number of transistors, length

of longest transistor chain for pull-up (∑PU), length of the

longest transistor chain for pull-down (∑PD), logical effort

(average per cell input), number of functions that do not respect

the lower bounds and the number of unfeasible functions is

shown. The CMOS lower bound from BDDs is a clear winner

for total number of transistors, this happens because even if

some nodes are duplicated, it is possible to remove some

transistors, which compensates the duplication with advantages.

The two methods presented in Fig. 4 and Fig. 5 respect the

lower bound, so these methods have equal ∑PU lengths and

∑PD lengths, as shown in Table 1. However the total number of

transistors is smaller for the CMOS LB from BDDs, which

explains the advantage this method also has in terms of logical

effort. Notice that the CSP1 respect the LB for the PU, as

expected from its criterion of choice. The CSP2 method presents

a reduced ∑PD length through a tradeoff that increases the ∑PU

length compared to CSP1. This tradeoff results in an advantage

of CSP2 with respect to CSP1, when logical effort is considered,

as it can be observed in Table 1. All methods produce functions

not respecting the lower bounds, with exception of NCSP and

CMOS LB from BDDs. The CMOS from BDD method is the

one that produces the highest number of functions not respecting

Table 1. Comparison of six different methods for cell level transistor network generation.

 Logic

Figures of merit CSP1 [8] CSP2 [8] NCSP [5]
CMOS from

BDDs [3,7]

Optimized CMOS

from BDDs [3,7]

CMOS LB

from BDDs

∑ # transistors 75530 75456 75889 76774 73438 72307

∑PU length 11954 13084 11954 15538 14227 11954

∑PD length 17009 15931 14242 15538 15321 14242

Aver. logical effort 4.54 4.37 3.83 4.35 4.07 3.68

#f not respecting LB 2312 2312 0 3148 2373 0

of unfeasible f 1546 791 0 0 0 0

the lower bounds. However, all the functions it produces have at

most 4 transistor in series, and therefore they are considered

feasible with a single cell. The only methods to produce networks

with more than 4 transistors in series are CSP1 and CSP2. This is

a result of using dual networks, which will result in excessive

number of transistors in series when making a dual of a network

that has many transistors in parallel. We have also observed that

for networks with the same chain lengths, the one with a smaller

transistor count is the winner.

5. CONCLUSIONS

We have shown that the logical effort to compute a function

depends on the chosen topology. The use of minimum transistor

lengths while reducing the overall number of transistors reduces

significantly the logical effort of the resulting networks, a

reduction of 15 to 19% is obtained when compared to CMOS

series-parallel. A reduced logical effort is directly transposed to a

reduction in the best achievable delay of a circuit.

6. REFERENCES

[1] C.Yang and M.Ciesielski. BDS: a BDD-based logic

optimization system. IEEE Transactions on CAD, Volume

21, Issue 7, July 2002 Page(s):866 – 876.

[2] P. Buch, A. Narayan, A.R. Newton and A. Sangiovanni-

Vincentelli. Logic synthesis for large pass transistor circuits.

ICCAD 1997. Pages:663 – 670.

[3] C. Scholl and B. Becker. On the generation of multiplexer

circuits for pass transistor logic. DATE 2000. Pp:372 – 378.

[4] P. Lindgren, M. Kerttu, M. Thornton and R. Drechsler. Low

power optimization technique for BDD mapped circuits.

ASP-DAC 2001. Pages:615 – 621.

[5] R.S. Shelar and S.S. Sapatnekar. An efficient algorithm for

low power pass transistor logic synthesis. ASP-DAC 2002.

Pages:87 – 92.

[6] M. Avci and T. Yildirim. General design method for

complementary pass transistor logic circuits. Electronics

Letters, Vol.: 39 , Number: 1 , 9 Jan. 2003. Pages:46 – 48.

[7] R.S. Shelar and S. Sapatnekar. BDD decomposition for delay

oriented pass transistor logic synthesis. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on Volume

13, Issue 8, Aug. 2005 Page(s):957 - 970.

[8] A.I. Reis, M. Robert, D. Auvergne and R. Reis. Associating

CMOS transistors with BDD arcs for technology mapping.

Electronics Letters, v. 31, n. 14, p. 1118-1120, 1995.

[9] S. Gavrilov, A. Glebov, S. Pullela, S.C. Moore, A.

Dharchoudhury, R. Panda, G. Vijayan and D.T. Blaauw.

Library-less synthesis for static CMOS combinational logic

circuits. ICCAD 1997. Pages:658 – 662.

[10] C. L. Liu and J. A. Abraham. Transistor level synthesis for

static CMOS combinational circuits. VLSI, 1999.

Proceedings of the Ninth Great Lakes Symposium. Page(s):

172 - 175.

[11] S. Gavrilov and A. Glebiy. BDD based circuit level structural

optimization for digital CMOS. Proceedings of MALOPD

1999. Pages: 45 – 49.

[12] M. Kanecko and J. Tian. Concurrent cell generation and

mapping for CMOS logic circuits. ASPDAC97. Pp. 247– 52.

[13] R.E.B. Poli, F.R. Schneider, R.P. Ribas and A.I. Reis.

Unified theory to build cell-level transistor networks from

BDDs. SBCCI 2003. Pages: 199 – 204.

[14] I.Sutherland, B.Sproull and D.Harris, Logical Effort:

Designing Fast CMOS Circuits, Morgan Kaufmann, 1999.

[15] F.R.Schneider, R.P.Ribas, S.S.Sapatnekar, A.I.Reis, “Exact

lower bound for the number of switches in series to

implement a combinational logic cell”, ICCD 2005, pp. 357

– 362.

[16] L.S. Rosa Junior, F. Marques, T.M.G. Cardoso, R.P.Ribas,

S.S.Sapatnekar, A.I.Reis, “Fast Transistor Networks from

BDDs”, SBCCI 2006 proceedings.

