
Embedded Signature Insertion
Based on Profiling Deployed Software Technique

Fabian Vargas, Cláudia A. Rocha, Antônio A. de Alecrim, Carlos A. Becker

Electrical Engineering Dept.
Catholic University – PUCRS

Av. Ipiranga, 6681.
90619-900 Porto Alegre – Brazil

vargas@computer.org

ABSTRACT

We propose a new approach1, namely Optimized Embedded
Signature Monitoring (OESM) to perform on-line control-flow
fault detection. The underlined advantage of this approach is
the ability to perform a profiling algorithm that analyses the
control-flow graph of user programs in order to optimize the
number of checkpoints (i.e., signatures) to be inserted along
with the application code during the software development
phase. By optimization, we mean to find, for a given
application, the best trade-off between the minimum number of
signatures for the maximum fault detection coverage. The
embedded signatures are checked at runtime by the processor
against compilation-time pre-computed values every time the
processor reaches these signature points. In order to evaluate
the validity of the proposed approach, experimental results
have been carried out. The obtained results indicate that
OESM minimizes the number of signatures embedded in the
application code (thus, minimizing memory overhead and
performance degradation) while maintaining the same (or at
least a similar) fault-detection capability level when applied to
conventional control-flow fault detection approaches. At
present, a tool that partially automates the proposed approach
is under development.

1. INTRODUCTION

For real-time embedded applications, system robustness is
frequently achieved by means of hardware redundancy [1].
However, this solution results inevitably in more expensive
systems. Additionally, power consumption and volume/weight
also increase beyond affordable values for most of the mass-
consumer products. An alternative solution to this trade-off is
the use of software redundancy [2]. This option is much more
cost-effective. However, it implies in system performance
degradation and memory overhead that can rarely be accepted
by applications devoted to real-time responses. These penalties
are due to the extra checking instructions that must be inserted
in the application code, at specific checking points. These
instructions must be executed at runtime by the processor.

It is in this scenario that we propose a new technique,
which privileges robustness and performance at the same time,
while maintaining overall system cost at reasonable values.
The technique is based on a profiling algorithm that analyses
the control-flow graph of user programs to optimize the

1 This work is partially supported by CNPq.

number of checkpoints to be inserted along with the application
code during the software development phase. By optimization,
we mean to find the best trade-off between the minimum
number of checkpoints for the maximum fault detection
coverage.

The remainder of this paper is divided as follows: Section
2 describes the proposed approach, while Section 3 presents the
final conclusions of this work.

2. THE PROPOSED APPROACH

2.1. The Graph and the Adjacency Matrix
 Consider a weighted graph G(V,E), where V is the vertices
(or node) and E is the edge that connects a pair of nodes.
Consider also that Wi/j is the weight of the edge connecting
nodes Vi and Vj. Then, for the graph given in Fig. 1, V =
{1,2,3,4,5,6,7} and E = {1001/1, 2001/2, 1502/3, 4003/1, 203/4,
703/5, 954/6, 1355/6, 406/2, 506/7}.
 Assume that this graph represents the control-flow for a
given application. In this scenario, each node represents a basic
block of instructions of the code, and the edges represent the
conditional/unconditional branches between basic clocks.
Assume also that the frequency by which the branches are
taken during execution is indicated by the weight associated
with each edge of the graph. For instance, the Adjacency
Matrix A = (aij)NxN of G is defined by:
aij := Wi/j

� if V i and Vj ∈ E;
 � else “0”if;
where N is the number of nodes in G. Then, Fig. 2 depicts A.

2.2. The Profiling Algorithm

Software profiling has been proposed by software engineers a
few decades ago and has been used since then basically to
observe, gather, and analyze data to characterize a program’s
run-time behavior [3]. For these professionals, profiling
deployed software is valuable because it can provide the
meaning to improve programs after the development phase,
when these programs are on the field. Then, profiling deployed
software provides insights into how the software is actually
utilized [4], which configurations are being employed [5], what
development assumptions may not hold [6], where validation
activities are lacking [7], or which scenarios are most likely to
lead to a failure [8]. Profiling usually requires the
instrumentation of the program, that is, the addition of probes
to enable the examination of the program’s on-the-field run-
time behavior. As such, the act of profiling penalizes the target

software with execution overhead. The magnitude of the
overhead depends, at least to some extent, on the number, the
location, and the type of inserted profiling probes.

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

0000000

00000

000000

000000

0000

000000

00000

A

7/62/6

6/5

6/4

5/34/31/3

3/2

2/11/1

ww

w

w

www

w

ww

Fig. 2. Adjacency Matrix A.

Fig. 1. Example of a graph terminology.

 In the present work, we propose to use profiling deployed
software in a quite different manner and purpose: in our case,
this technique is used to provide insight into which parts
(paths, functions, etc) of the program are being the most
exercised. In other words, we assume that the scenarios that are
most likely to lead to a system failure are those where the
processor spends most of the execution time. Once identified,
these parts are the only to be protected by embedding software
signatures of Type (a), as described in Section 2. The
remaining (less used) parts of the application program do not
receive embedded signatures and maintain their original
format. By doing so, we optimize the number of checkpoints to
be inserted along with the application program during the
software development phase. In practice, this solution
minimizes the memory overhead required to store checkpoints,
reference and control information while not sacrificing the fault
detection capability provided by CFC approaches.

 In our approach, the instrumentation of the program is
very simple: it is based on the addition of counters at the points
where the CFC signatures are embedded in the application
program. In the software validation phase, these counters are
used to determine the frequency by which the signatures are
checked out during application runs, for a representative input
data set. By the end of this process, after reading out all
counters, the instrumentation is erased from the program.
Therefore, there is no memory overhead or performance
penalty induced by the used instrumentation.

 Based on this approach, we expect to simplify the
Adjacency Matrix by:

(a) Increasing the matrix “0”s population. This is obtained by
reducing the number of edges connecting nodes in the graph. To
reduce the number of edges, we first select arbitrarily a
threshold weight, Wth, below which all weighted edges are
eliminated from the Weighted Graph, so thus from the Adjacency
Matrix. In this approach, Wth represents the frequency by which
that edge of the graph was exercised during application runs, for
a representative input data set. In other words, Wth is defined by
the counter value embedded at that program basic block.

(b) Reducing matrix dimension from ANxN to AMxM, where M < N.
This is obtained by reducing the number of nodes of the

Weighted Graph. Nodes (i.e., program basic blocks) that do not
have weighted edges leaving from or reaching it can be
eliminated from the Weighted Graph, which implies the
elimination of lines and columns in the Weighted Matrix.

 Note that as long as nodes are eliminated from the
Adjacency Matrix, program basic blocks are eliminated from
the Weighted Graph. Also, if a weighted edge Wij is changed
by a “0” in the Adjacency Matrix, a conditional branch is
eliminated from the Weighted Graph. In both cases, as
consequence, embedded monitoring signatures are strategically
removed from the application program.

3. FINAL CONCLUSIONS

We presented a new approach, Optimized Embedded Signature
Monitoring – OESM, to perform on-line control-flow fault
detection. The claimed approach’s advantage is the ability to
perform a profiling algorithm that analyses the control-flow
graph of user programs in order to reduce the number of
checkpoints (i.e., signatures) to be inserted along with the
application code during the software development phase. For a
given application, this reduction is ruled by the best trade-off
between “the minimum number of signatures” for “ the
maximum fault detection coverage”. The embedded signatures
are checked at runtime by the processor against compilation-
time pre-computed values every time the processor reaches
these signature points.
 In order to evaluate the validity of the proposed approach,
experimental results have been carried out. The obtained
results indicate that OESM minimizes the number of signatures
embedded in the application code (thus, minimizing memory
overhead and performance degradation) while maintaining the
same (or at least a similar) fault-detection capability level when
applied to conventional control-flow fault detection
approaches. At present, a tool that partially automates the
proposed approach is under development.

REFERENCES
[1] Bernardi, P.; Veiras Bolzani; L. M.; Rebaudengo, M.; Sonza Reorda,

M.; Vargas, F. L.; Violante, M. A New Hybrid Fault Detection
Technique for Systems-on-a-Chip. IEEE Transactions on
Computers, Feb. 2006, Vol. 55, No. 2. pp.185-198.

[2] Bezerra, E. A.; Vargas, F.; Gough, M. P. Improving Reconfigurable
Systems Reliability by Combining Periodical Test and Redundancy
Techniques. Journal of Electronic Testing: Theory and Applications
– JETTA. Kluwer Academic Publishers, New York, USA. Vol. 17,
May 1st, 2001, pp. 163-174.

[3] Diep, M.; Elbaum, S.; Cohen, M. Profiling Deployed Software:
Strategic Probe Placement. Technical Report CSE-05-08-01/CSE-
2005-005, Dept. of Computer Science and Engineering, Univ. of
Nebraska-Lincoln, Lincoln, NE, USA, Aug. 2005.

[4] Orso, A.; Apiwattanapong, T.; Harrold M. J. Leveraging Field Data
for Impact Analysis and Regression Testing. Foundations of
Software Engineering, ACM, Sept. 2003. pp. 128-137.

[5] Memon A.; Porter, A.; Yilmaz, C.; Nagarajan, A.; Schmidt, D.;
Natarajan, B.; Skoll: Distributed Continuous Quality Assurance.
International Conference on Software Engineering, May 2004. pp.
449-458.

[6] Elbaum, S.; Diep, M. Profiling Deployed Software: Assessing
Strategies and Testing Opportunities. IEEE Transactions on
Software Engineering, 31(4), 2005. pp. 312-327.

[7] Elbaum, S.; Hardojo, M. An Empirical Study of Profiling Strategies
for Released Software and Their Impact on Testing Activities.
International Symposium on Software Testing and Analysis, ACM,
June 2004. pp. 65-75.

[8] Liblit, B.; Aiken, A.; Zheng, Z.; Jordan M. Bud Isolation Via Remote
Program Sampling. International Conference on Programming
Language Design and Impl., ACM, June 2003. pp. 141-154.

2

1

4

6

3

7

5

4003/1 2001/2

703/5

1355/6

1502/3

506/7

203/4

954/6

1001/1

406/2

