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ABSTRACT 

We propose a new approach1, namely Optimized Embedded 
Signature Monitoring (OESM) to perform on-line control-flow 
fault detection. The underlined advantage of this approach is 
the ability to perform a profiling algorithm that analyses the 
control-flow graph of user programs in order to optimize the 
number of checkpoints (i.e., signatures) to be inserted along 
with the application code during the software development 
phase. By optimization, we mean to find, for a given 
application, the best trade-off between the minimum number of 
signatures for the maximum fault detection coverage. The 
embedded signatures are checked at runtime by the processor 
against compilation-time pre-computed values every time the 
processor reaches these signature points. In order to evaluate 
the validity of the proposed approach, experimental results 
have been carried out. The obtained results indicate that 
OESM minimizes the number of signatures embedded in the 
application code (thus, minimizing memory overhead and 
performance degradation) while maintaining the same (or at 
least a similar) fault-detection capability level when applied to 
conventional control-flow fault detection approaches. At 
present, a tool that partially automates the proposed approach 
is under development. 
 
 

1. INTRODUCTION 

For real-time embedded applications, system robustness is 
frequently achieved by means of hardware redundancy [1]. 
However, this solution results inevitably in more expensive 
systems. Additionally, power consumption and volume/weight 
also increase beyond affordable values for most of the mass-
consumer products. An alternative solution to this trade-off is 
the use of software redundancy [2]. This option is much more 
cost-effective. However, it implies in system performance 
degradation and memory overhead that can rarely be accepted 
by applications devoted to real-time responses. These penalties 
are due to the extra checking instructions that must be inserted 
in the application code, at specific checking points. These 
instructions must be executed at runtime by the processor. 

It is in this scenario that we propose a new technique, 
which privileges robustness and performance at the same time, 
while maintaining overall system cost at reasonable values. 
The technique is based on a profiling algorithm that analyses 
the control-flow graph of user programs to optimize the 

                                                 
1 This work is partially supported by CNPq. 

number of checkpoints to be inserted along with the application 
code during the software development phase. By optimization, 
we mean to find the best trade-off between the minimum 
number of checkpoints for the maximum fault detection 
coverage. 

The remainder of this paper is divided as follows: Section 
2 describes the proposed approach, while Section 3 presents the 
final conclusions of this work. 

 
2. THE PROPOSED APPROACH 

2.1. The Graph and the Adjacency Matrix 
 Consider a weighted graph G(V,E), where V is the vertices 
(or node) and E is the edge that connects a pair of nodes. 
Consider also that Wi/j is the weight of the edge connecting 
nodes Vi and Vj. Then, for the graph given in Fig. 1, V = 
{1,2,3,4,5,6,7} and E = {1001/1, 2001/2, 1502/3, 4003/1, 203/4, 
703/5, 954/6, 1355/6, 406/2, 506/7}. 
 Assume that this graph represents the control-flow for a 
given application. In this scenario, each node represents a basic 
block of instructions of the code, and the edges represent the 
conditional/unconditional branches between basic clocks. 
Assume also that the frequency by which the branches are 
taken during execution is indicated by the weight associated 
with each edge of the graph. For instance, the Adjacency 
Matrix A = (aij)NxN of G is defined by: 
aij := Wi/j 

� if V i and Vj ∈ E; 
  � else “0”if;  
where N is the number of nodes in G. Then, Fig. 2 depicts A. 
 
2.2. The Profiling Algorithm 

Software profiling has been proposed by software engineers a 
few decades ago and has been used since then basically to 
observe, gather, and analyze data to characterize a program’s 
run-time behavior [3]. For these professionals, profiling 
deployed software is valuable because it can provide the 
meaning to improve programs after the development phase, 
when these programs are on the field. Then, profiling deployed 
software provides insights into how the software is actually 
utilized [4], which configurations are being employed [5], what 
development assumptions may not hold [6], where validation 
activities are lacking [7], or which scenarios are most likely to 
lead to a failure [8]. Profiling usually requires the 
instrumentation of the program, that is, the addition of probes 
to enable the examination of the program’s on-the-field run-
time behavior. As such, the act of profiling penalizes the target 



software with execution overhead. The magnitude of the 
overhead depends, at least to some extent, on the number, the 
location, and the type of inserted profiling probes. 
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Fig. 2. Adjacency Matrix A. 

 
 
 
 
 

Fig. 1. Example of a graph terminology. 
 
 In the present work, we propose to use profiling deployed 
software in a quite different manner and purpose: in our case, 
this technique is used to provide insight into which parts 
(paths, functions, etc) of the program are being the most 
exercised. In other words, we assume that the scenarios that are 
most likely to lead to a system failure are those where the 
processor spends most of the execution time. Once identified, 
these parts are the only to be protected by embedding software 
signatures of Type (a), as described in Section 2. The 
remaining (less used) parts of the application program do not 
receive embedded signatures and maintain their original 
format. By doing so, we optimize the number of checkpoints to 
be inserted along with the application program during the 
software development phase. In practice, this solution 
minimizes the memory overhead required to store checkpoints, 
reference and control information while not sacrificing the fault 
detection capability provided by CFC approaches. 

 In our approach, the instrumentation of the program is 
very simple: it is based on the addition of counters at the points 
where the CFC signatures are embedded in the application 
program. In the software validation phase, these counters are 
used to determine the frequency by which the signatures are 
checked out during application runs, for a representative input 
data set. By the end of this process, after reading out all 
counters, the instrumentation is erased from the program. 
Therefore, there is no memory overhead or performance 
penalty induced by the used instrumentation. 

 Based on this approach, we expect to simplify the 
Adjacency Matrix by:  

(a) Increasing the matrix “0”s population. This is obtained by 
reducing the number of edges connecting nodes in the graph. To 
reduce the number of edges, we first select arbitrarily a 
threshold weight, Wth, below which all weighted edges are 
eliminated from the Weighted Graph, so thus from the Adjacency 
Matrix. In this approach, Wth represents the frequency by which 
that edge of the graph was exercised during application runs, for 
a representative input data set. In other words, Wth is defined by 
the counter value embedded at that program basic block. 

(b) Reducing matrix dimension from ANxN to AMxM, where M < N. 
This is obtained by reducing the number of nodes of the 

Weighted Graph. Nodes (i.e., program basic blocks) that do not 
have weighted edges leaving from or reaching it can be 
eliminated from the Weighted Graph, which implies the 
elimination of lines and columns in the Weighted Matrix.  

 Note that as long as nodes are eliminated from the 
Adjacency Matrix, program basic blocks are eliminated from 
the Weighted Graph. Also, if a weighted edge Wij is changed 
by a “0” in the Adjacency Matrix, a conditional branch is 
eliminated from the Weighted Graph. In both cases, as 
consequence, embedded monitoring signatures are strategically 
removed from the application program. 

 
3. FINAL CONCLUSIONS 

We presented a new approach, Optimized Embedded Signature 
Monitoring – OESM, to perform on-line control-flow fault 
detection. The claimed approach’s advantage is the ability to 
perform a profiling algorithm that analyses the control-flow 
graph of user programs in order to reduce the number of 
checkpoints (i.e., signatures) to be inserted along with the 
application code during the software development phase. For a 
given application, this reduction is ruled by the best trade-off 
between “the minimum number of signatures” for “ the 
maximum fault detection coverage”. The embedded signatures 
are checked at runtime by the processor against compilation-
time pre-computed values every time the processor reaches 
these signature points.  
 In order to evaluate the validity of the proposed approach, 
experimental results have been carried out. The obtained 
results indicate that OESM minimizes the number of signatures 
embedded in the application code (thus, minimizing memory 
overhead and performance degradation) while maintaining the 
same (or at least a similar) fault-detection capability level when 
applied to conventional control-flow fault detection 
approaches. At present, a tool that partially automates the 
proposed approach is under development. 
 

REFERENCES 
[1] Bernardi, P.; Veiras Bolzani; L. M.; Rebaudengo, M.; Sonza Reorda, 

M.; Vargas, F. L.; Violante, M.   A New Hybrid Fault Detection 
Technique for Systems-on-a-Chip. IEEE Transactions on 
Computers, Feb. 2006, Vol. 55, No. 2. pp.185-198. 

[2] Bezerra, E. A.; Vargas, F.; Gough, M. P.  Improving Reconfigurable 
Systems Reliability by Combining Periodical Test and Redundancy 
Techniques.  Journal of Electronic Testing: Theory and Applications 
– JETTA. Kluwer Academic Publishers, New York, USA. Vol. 17, 
May 1st, 2001, pp. 163-174. 

[3] Diep, M.; Elbaum, S.; Cohen, M.  Profiling Deployed Software: 
Strategic Probe Placement. Technical Report CSE-05-08-01/CSE-
2005-005, Dept. of Computer Science and Engineering, Univ. of 
Nebraska-Lincoln, Lincoln, NE, USA, Aug. 2005. 

[4] Orso, A.; Apiwattanapong, T.; Harrold M. J.   Leveraging Field Data 
for Impact Analysis and Regression Testing. Foundations of 
Software Engineering, ACM, Sept. 2003. pp. 128-137. 

[5] Memon A.; Porter, A.; Yilmaz, C.; Nagarajan, A.; Schmidt, D.; 
Natarajan, B.; Skoll: Distributed Continuous Quality Assurance. 
International Conference on Software Engineering, May 2004. pp. 
449-458. 

[6] Elbaum, S.; Diep, M.  Profiling Deployed Software: Assessing 
Strategies and Testing Opportunities. IEEE Transactions on 
Software Engineering, 31(4), 2005. pp. 312-327. 

[7] Elbaum, S.; Hardojo, M.  An Empirical Study of Profiling Strategies 
for Released Software and Their Impact on Testing Activities. 
International Symposium on Software Testing and Analysis, ACM, 
June 2004. pp. 65-75. 

[8] Liblit, B.; Aiken, A.; Zheng, Z.; Jordan M. Bud Isolation Via Remote 
Program Sampling. International Conference on Programming 
Language Design and Impl., ACM, June 2003. pp. 141-154. 

2 

1 

4 

6 

3 

7 

5 

4003/1 2001/2 

703/5 

1355/6 

1502/3 

506/7 

203/4 

954/6 

1001/1 

406/2 


