Embedded Signature lnsertion
Based on Profiling Deployed Software Technique

Fabian Vargas, Claudia A. Rocha, Antdnio A. de Alecrim, Carlos A. Becker

Electrical Engineering Dept.
Catholic University — PUCRS
Av. Ipiranga, 6681.
90619-900 Porto Alegre — Brazil
vargas@computer.org

ABSTRACT

We propose a new approach’, namely Optimized Embedded
Sgnature Monitoring (OESM) to perform on-line control-flow
fault detection. The underlined advantage of this approach is
the ability to perform a profiling algorithm that analyses the
control-flow graph of user programs in order to optimize the
number of checkpoints (i.e., signatures) to be inserted along
with the application code during the software development
phase. By optimization, we mean to find, for a given
application, the best trade-off between the minimum number of
signatures for the maximum fault detection coverage. The
embedded signatures are checked at runtime by the processor
against compilation-time pre-computed values every time the
processor reaches these signature points. In order to evaluate
the validity of the proposed approach, experimental results
have been carried out. The obtained results indicate that
OESM minimizes the number of signatures embedded in the
application code (thus, minimizing memory overhead and
performance degradation) while maintaining the same (or at
least a similar) fault-detection capability level when applied to
conventional control-flow fault detection approaches. At
present, a tool that partially automates the proposed approach
isunder devel opment.

1. INTRODUCTION

For real-time embedded applications, system rolesstns
frequently achieved by means bérdware redundancy [1].
However, this solution results inevitably in morgpensive
systems. Additionally, power consumption and vollwesght
also increase beyond affordable values for moghefmass-
consumer products. An alternative solution to thésle-off is
the use ofoftware redundancy [2]. This option is much more
cost-effective. However, it implies in system penfiance
degradation and memory overhead that can rarebcbepted
by applications devoted to real-time responsessd@lpenalties
are due to the extra checking instructions thattrhasnserted
in the application code, at specific checking pminthese
instructions must be executed at runtime by thegssor.

It is in this scenario that we propose a new temii
which privileges robustness and performance at#mee time,
while maintaining overall system cost at reasonaldkies.
The technique is based on a profiling algorithnt guaalyses
the control-flow graph of user programs to optimittee

! This work is partially supported by CNPq.

number of checkpoints to be inserted along withaglication
code during the software development phase. Byripdtion,
we mean to find the best trade-off between thi@imum
number of checkpoints for the maximum fault detection
coverage.

The remainder of this paper is divided as folloextion
2 describes the proposed approach, wiitgion 3 presents the
final conclusions of this work.

2. THE PROPOSED APPROACH

2.1. The Graph and the Adjacency Matrix

Consider a weighted graj@(V,E), whereV is thevertices
(or node) andE is the edge that connects a pair of nodes.
Consider also that }is the weight of the edge connecting
nodes VY and V. Then, for the graph given in Fig. 1, V =
{1,2,3,4,5,6,7} and E = {100, 2005, 1503, 4001, 20y,
7035, 956, 1356, 40572, 5057}

Assume that this graph represents the control-flowa
given application. In this scenario, each nodeesgnmts dasic
block of instructions of the code, and the edges repteben
conditional/unconditional branches between basic clocks.
Assume also that the frequency by which the brasmdre
taken during execution is indicated by tweight associated
with each edge of the graph. For instance, Mugacency
Matrix A = (g;)nxn Of G is defined by:
gj = Wi,j :IfV,and\,fEIE,

= else “0"if;
where N is the number of nodes in G. Then, Fige@ats A.

2.2. TheProfiling Algorithm

Software profiling has been proposed by software engineers a
few decades ago and has been used since then llyatica
observe, gather, and analyze data to characterregram’s
run-time behavior [3]. For these professionals, fijing
deployed software is valuable because it can peovite
meaning to improve programs after the developmérase,
when these programs are on the field. Then, pngfileployed
software provides insights into how the softwareaciually
utilized [4], which configurations are being empdaly{5], what
development assumptions may not hold [6], wheréatibn
activities are lacking [7], or which scenarios arest likely to
lead to a failure [8]. Profiling usually requireshet
instrumentation of the program, that is, the additf probes
to enable the examination of the program’s on-talke-frun-
time behavior. As such, the act of profiling peredi the target



software with execution overhead. The magnitude thodf
overhead depends, at least to some extent, onutinber, the
location, and the type of inserted profiling probes

Wy, W, 0 0 0 0 0
0 0 w, 0 0 0 0
Wy 0 0 Wy wy O 0
A=l 0 0O 0 0 0 w, O
0 0 0 0 0 w, 0
0 w,, O 0 0 0w,
0 0 0 0 0 0 0

Fig. 1. Example of a graph terminology.

In the present work, we propose to psefiling deployed
software in a quite different manner and purpose: in owgeca
this technique is used to provide insight into ‘khiparts
(paths, functions, etc) of the program are being thost
exercised. In other words, we assume that the sosrthat are
most likely to lead to a system failure are thodeere the
processor spends most of the execution time. Cametified,
these parts are the only to be protected by embgddiftware
signhatures ofType (a), as described in Section 2. The
remaining (less used) parts of the application g@nrgdo not
receive embedded signatures and maintain theirinatig
format. By doing so, we optimize the number of dpeints to
be inserted along with the application program myrihe
software development phase. In practice, this ®olut
minimizes the memory overhead required to storelgbmnts,
reference and control information while not sacrifg the fault
detection capability provided by CFC approaches.

In our approach, the instrumentation of the progia
very simple: it is based on the addition of countgrthe points
where the CFC signatures are embedded in the appfc
program. In the software validation phase, theasmis are
used to determine the frequency by which the sigeatare
checked out during application runs, for a repregem input
data set. By the end of this process, after reading all
counters, the instrumentation is erased from thegnam.
Therefore, there is no memory overhead or perfooman
penalty induced by the used instrumentation.

Based on this approach, we expect to simplify the [4]

Adjacency Matrix by:

(a) Increasing the matrix “0”s population. This is obtained by
reducing the number of edges connecting nodes in the graph. To
reduce the number of edges, we first select arbitrarily a
threshold weight, Wy, below which all weighted edges are
eliminated from the Weighted Graph, so thus from the Adjacency
Matrix. In this approach, Wy, represents the frequency by which
that edge of the graph was exercised during application runs, for
a representative input data set. In other words, Wy, is defined by
the counter value embedded at that program basic block.

(b) Reducing matrix dimension from Ay t0 Awxv, Where M < N.
This is obtained by reducing the number of nodes of the

Weighted Graph. Nodes (i.e., program basic blocks) that do not
have weighted edges leaving from or reaching it can be
eliminated from the Weighted Graph, which implies the
elimination of lines and columns in the Weighted Matrix.

Note that as long as nodes are eliminated from the
Adjacency Matrix, program basic blocks are elimathfrom
the Weighted Graph. Also, if a weighted edgg #/changed
by a “0” in the Adjacency Matrix, a conditional bich is
eliminated from the Weighted Graph. In both casas,
consequence, embedded monitoring signatures ategitally
removed from the application program.

3. FINAL CONCLUSIONS

We presented a new approach, Optimized Embeddedibig
Monitoring — OESM, to perform on-line control-flofault
detection. The claimed approach’s advantage isability to
perform a profiling algorithm that analyses the tcokflow
graph of user programs in order to reduce the nunafe
checkpoints (i.e., signatures) to be inserted alwrity the
application code during the software developmemisphFor a
given application, this reduction is ruled by thesbtrade-off
between the minimum number of signatures’ for “the
maximum fault detection coverage’. The embedded signatures
are checked at runtime by the processor againspitation-
time pre-computed values every time the processaches
these signature points.

In order to evaluate the validity of the proposggroach,
experimental results have been carried out. Theaimdxd
results indicate that OESM minimizes the numbesighatures
embedded in the application code (thus, minimizingmory
overhead and performance degradation) while maiinigithe
same (or at least a similar) fault-detection cafmtéevel when
applied to conventional control-flow fault detectio
approaches. At present, a tool that partially aates the
proposed approach is under development.

REFERENCES

[1] Bernardi, P.; Veiras Bolzani; L. M.; Rebaudengo, M.; Sonza Reorda,
M.; Vargas, F. L.; Violante, M. A New Hybrid Fault Detection
Technique for Systems-on-a-Chip. |EEE Transactions on
Computers, Feb. 2006, Vol. 55, No. 2. pp.185-198.

[2] Bezerra, E. A,; Vargas, F.; Gough, M. P. Improving Reconfigurable
Systems Reliability by Combining Periodical Test and Redundancy
Techniques. Journal of Electronic Testing: Theory and Applications
— JETTA. Kluwer Academic Publishers, New York, USA. Vol. 17,
May 1%, 2001, pp. 163-174.

[3] Diep, M.; Elbaum, S.; Cohen, M. Profiling Deployed Software:

Strategic Probe Placement. Technical Report CSE-05-08-01/CSE-

2005-005, Dept. of Computer Science and Engineering, Univ. of

Nebraska-Lincoln, Lincoln, NE, USA, Aug. 2005.

Orso, A.; Apiwattanapong, T.; Harrold M. J. Leveraging Field Data

for Impact Analysis and Regression Testing. Foundations of

Software Engineering, ACM, Sept. 2003. pp. 128-137.

[5] Memon A.; Porter, A.; Yilmaz, C.; Nagarajan, A.; Schmidt, D
Natarajan, B.; Skoll: Distributed Continuous Quality Assurance.
International Conference on Software Engineering, May 2004. pp.
449-458.

[6] Elbaum, S.; Diep, M. Profiling Deployed Software: Assessing
Strategies and Testing Opportunities. |IEEE Transactions on
Software Engineering, 31(4), 2005. pp. 312-327.

[71 Elbaum, S.; Hardojo, M. An Empirical Study of Profiling Strategies
for Released Software and Their Impact on Testing Activities.
International Symposium on Software Testing and Analysis, ACM,
June 2004. pp. 65-75.

[8] Liblit, B.; Aiken, A.; Zheng, Z.; Jordan M. Bud Isolation Via Remote
Program Sampling. International Conference on Programming
Language Design and Impl., ACM, June 2003. pp. 141-154.



